At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's analyze each of the given statements step-by-step to determine whether they are true or false based on the sets provided:
Given sets:
[tex]\[ P = \{0, 2, 4\} \][/tex]
[tex]\[ Q = \{x \mid x \text{ is an odd number}\} \][/tex]
[tex]\[ R = \{2\} \][/tex]
### a. [tex]\( P \subseteq Q \)[/tex] ?
We need to determine if [tex]\( P \)[/tex] is a subset of [tex]\( Q \)[/tex], meaning every element in [tex]\( P \)[/tex] should also be in [tex]\( Q \)[/tex].
- [tex]\( P \)[/tex] contains the elements \{0, 2, 4\}.
- [tex]\( Q \)[/tex] is the set of all odd numbers.
Since [tex]\( P \)[/tex] contains the elements 0, 2, and 4, and none of these elements are odd (Q contains elements like -3, -1, 1, 3, etc.), none of the elements in [tex]\( P \)[/tex] are in [tex]\( Q \)[/tex].
Therefore:
[tex]\[ P \subseteq Q \][/tex] is [tex]\(\text{False}\)[/tex].
### b. [tex]\( R \subseteq P \)[/tex] ?
We need to determine if [tex]\( R \)[/tex] is a subset of [tex]\( P \)[/tex], meaning every element in [tex]\( R \)[/tex] should also be in [tex]\( P \)[/tex].
- [tex]\( R \)[/tex] contains the single element \{2\}.
- [tex]\( P \)[/tex] contains the elements \{0, 2, 4\}.
The element 2 is indeed an element of [tex]\( P \)[/tex].
Therefore:
[tex]\[ R \subseteq P \][/tex] is [tex]\(\text{True}\)[/tex].
### c. [tex]\( R \subseteq Q \)[/tex] ?
We need to determine if [tex]\( R \)[/tex] is a subset of [tex]\( Q \)[/tex], meaning every element in [tex]\( R \)[/tex] should also be in [tex]\( Q \)[/tex].
- [tex]\( R \)[/tex] contains the single element \{2\}.
- [tex]\( Q \)[/tex] is the set of all odd numbers.
Since 2 is not an odd number, it is not an element of [tex]\( Q \)[/tex].
Therefore:
[tex]\[ R \subseteq Q \][/tex] is [tex]\(\text{False}\)[/tex].
### d. [tex]\( R \nsubseteq Q \)[/tex] ?
We need to determine if [tex]\( R \)[/tex] is not a subset of [tex]\( Q \)[/tex], meaning not all elements in [tex]\( R \)[/tex] are in [tex]\( Q \)[/tex].
From the previous part, we've established that [tex]\( R \subseteq Q \)[/tex] is false because 2 is not an element of [tex]\( Q \)[/tex]. Hence, it directly implies that [tex]\( R \)[/tex] is not a subset of [tex]\( Q \)[/tex].
Therefore:
[tex]\[ R \nsubseteq Q \][/tex] is [tex]\(\text{True}\)[/tex].
### Summary
The answers for the statements are:
- a. [tex]\( P \subseteq Q \)[/tex]: [tex]\(\text{False}\)[/tex]
- b. [tex]\( R \subseteq P \)[/tex]: [tex]\(\text{True}\)[/tex]
- c. [tex]\( R \subseteq Q \)[/tex]: [tex]\(\text{False}\)[/tex]
- d. [tex]\( R \nsubseteq Q \)[/tex]: [tex]\(\text{True}\)[/tex]
Given sets:
[tex]\[ P = \{0, 2, 4\} \][/tex]
[tex]\[ Q = \{x \mid x \text{ is an odd number}\} \][/tex]
[tex]\[ R = \{2\} \][/tex]
### a. [tex]\( P \subseteq Q \)[/tex] ?
We need to determine if [tex]\( P \)[/tex] is a subset of [tex]\( Q \)[/tex], meaning every element in [tex]\( P \)[/tex] should also be in [tex]\( Q \)[/tex].
- [tex]\( P \)[/tex] contains the elements \{0, 2, 4\}.
- [tex]\( Q \)[/tex] is the set of all odd numbers.
Since [tex]\( P \)[/tex] contains the elements 0, 2, and 4, and none of these elements are odd (Q contains elements like -3, -1, 1, 3, etc.), none of the elements in [tex]\( P \)[/tex] are in [tex]\( Q \)[/tex].
Therefore:
[tex]\[ P \subseteq Q \][/tex] is [tex]\(\text{False}\)[/tex].
### b. [tex]\( R \subseteq P \)[/tex] ?
We need to determine if [tex]\( R \)[/tex] is a subset of [tex]\( P \)[/tex], meaning every element in [tex]\( R \)[/tex] should also be in [tex]\( P \)[/tex].
- [tex]\( R \)[/tex] contains the single element \{2\}.
- [tex]\( P \)[/tex] contains the elements \{0, 2, 4\}.
The element 2 is indeed an element of [tex]\( P \)[/tex].
Therefore:
[tex]\[ R \subseteq P \][/tex] is [tex]\(\text{True}\)[/tex].
### c. [tex]\( R \subseteq Q \)[/tex] ?
We need to determine if [tex]\( R \)[/tex] is a subset of [tex]\( Q \)[/tex], meaning every element in [tex]\( R \)[/tex] should also be in [tex]\( Q \)[/tex].
- [tex]\( R \)[/tex] contains the single element \{2\}.
- [tex]\( Q \)[/tex] is the set of all odd numbers.
Since 2 is not an odd number, it is not an element of [tex]\( Q \)[/tex].
Therefore:
[tex]\[ R \subseteq Q \][/tex] is [tex]\(\text{False}\)[/tex].
### d. [tex]\( R \nsubseteq Q \)[/tex] ?
We need to determine if [tex]\( R \)[/tex] is not a subset of [tex]\( Q \)[/tex], meaning not all elements in [tex]\( R \)[/tex] are in [tex]\( Q \)[/tex].
From the previous part, we've established that [tex]\( R \subseteq Q \)[/tex] is false because 2 is not an element of [tex]\( Q \)[/tex]. Hence, it directly implies that [tex]\( R \)[/tex] is not a subset of [tex]\( Q \)[/tex].
Therefore:
[tex]\[ R \nsubseteq Q \][/tex] is [tex]\(\text{True}\)[/tex].
### Summary
The answers for the statements are:
- a. [tex]\( P \subseteq Q \)[/tex]: [tex]\(\text{False}\)[/tex]
- b. [tex]\( R \subseteq P \)[/tex]: [tex]\(\text{True}\)[/tex]
- c. [tex]\( R \subseteq Q \)[/tex]: [tex]\(\text{False}\)[/tex]
- d. [tex]\( R \nsubseteq Q \)[/tex]: [tex]\(\text{True}\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.