Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's work through the given information step-by-step and develop a clear solution:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.