Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the volume of oxygen gas required to react with 13.5 grams of copper (I) sulfide [tex]\(Cu_2S\)[/tex] at a temperature of [tex]\(30.7^{\circ} \text{C}\)[/tex] and pressure of [tex]\(4.6 \text{ atm}\)[/tex], we follow these steps:
1. Convert the temperature to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 = 30.7 + 273.15 = 303.85 \text{ K} \][/tex]
2. Calculate the moles of [tex]\(Cu_2S\)[/tex]:
The molar mass of [tex]\(Cu_2S\)[/tex] is 159.16 g/mol.
[tex]\[ \text{Moles of } Cu_2S = \frac{\text{mass}}{\text{molar mass}} = \frac{13.5 \text{ g}}{159.16 \text{ g/mol}} \approx 0.08482 \text{ mol} \][/tex]
3. Determine the stoichiometry factor:
From the balanced chemical equation:
[tex]\[ Cu_2S(s) + O_2(g) \rightarrow Cu_2O(s) + SO_2(g) \][/tex]
It is clear that 1 mole of [tex]\(Cu_2S\)[/tex] reacts with 1 mole of [tex]\(O_2\)[/tex]. Thus, the stoichiometry factor is 1.
4. Calculate the moles of [tex]\(O_2\)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \text{moles of } Cu_2S \times \text{stoichiometry factor} = 0.08482 \text{ mol} \times 1 = 0.08482 \text{ mol} \][/tex]
5. Use the ideal gas law to calculate the volume of [tex]\(O_2\)[/tex]:
The ideal gas law is given by [tex]\(PV = nRT\)[/tex]. Solving for the volume [tex]\(V\)[/tex]:
[tex]\[ V = \frac{nRT}{P} \][/tex]
Where:
- [tex]\(n\)[/tex] is the moles of [tex]\(O_2\)[/tex]: 0.08482 mol
- [tex]\(R\)[/tex] is the ideal gas constant: 0.0821 L·atm/(mol·K)
- [tex]\(T\)[/tex] is the temperature in Kelvin: 303.85 K
- [tex]\(P\)[/tex] is the pressure in atm: 4.6 atm
Plugging in the values:
[tex]\[ V = \frac{0.08482 \text{ mol} \times 0.0821 \text{ L·atm/(mol·K)} \times 303.85 \text{ K}}{4.6 \text{ atm}} \][/tex]
Simplifying the expression:
[tex]\[ V \approx 0.45999 \text{ L} \][/tex]
Hence, the volume of oxygen gas required is approximately [tex]\(0.460 \text{ L}\)[/tex] (rounded to three significant figures).
1. Convert the temperature to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 = 30.7 + 273.15 = 303.85 \text{ K} \][/tex]
2. Calculate the moles of [tex]\(Cu_2S\)[/tex]:
The molar mass of [tex]\(Cu_2S\)[/tex] is 159.16 g/mol.
[tex]\[ \text{Moles of } Cu_2S = \frac{\text{mass}}{\text{molar mass}} = \frac{13.5 \text{ g}}{159.16 \text{ g/mol}} \approx 0.08482 \text{ mol} \][/tex]
3. Determine the stoichiometry factor:
From the balanced chemical equation:
[tex]\[ Cu_2S(s) + O_2(g) \rightarrow Cu_2O(s) + SO_2(g) \][/tex]
It is clear that 1 mole of [tex]\(Cu_2S\)[/tex] reacts with 1 mole of [tex]\(O_2\)[/tex]. Thus, the stoichiometry factor is 1.
4. Calculate the moles of [tex]\(O_2\)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \text{moles of } Cu_2S \times \text{stoichiometry factor} = 0.08482 \text{ mol} \times 1 = 0.08482 \text{ mol} \][/tex]
5. Use the ideal gas law to calculate the volume of [tex]\(O_2\)[/tex]:
The ideal gas law is given by [tex]\(PV = nRT\)[/tex]. Solving for the volume [tex]\(V\)[/tex]:
[tex]\[ V = \frac{nRT}{P} \][/tex]
Where:
- [tex]\(n\)[/tex] is the moles of [tex]\(O_2\)[/tex]: 0.08482 mol
- [tex]\(R\)[/tex] is the ideal gas constant: 0.0821 L·atm/(mol·K)
- [tex]\(T\)[/tex] is the temperature in Kelvin: 303.85 K
- [tex]\(P\)[/tex] is the pressure in atm: 4.6 atm
Plugging in the values:
[tex]\[ V = \frac{0.08482 \text{ mol} \times 0.0821 \text{ L·atm/(mol·K)} \times 303.85 \text{ K}}{4.6 \text{ atm}} \][/tex]
Simplifying the expression:
[tex]\[ V \approx 0.45999 \text{ L} \][/tex]
Hence, the volume of oxygen gas required is approximately [tex]\(0.460 \text{ L}\)[/tex] (rounded to three significant figures).
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.