Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Given [tex]\(\theta = \frac{9\pi}{4}\)[/tex], we aim to sketch this angle in standard position.
1. Identify the range: First, we need to determine the equivalent angle in the standard position, which must lie between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex].
2. Find the equivalent angle: Since [tex]\(\theta = \frac{9\pi}{4}\)[/tex] is more than [tex]\(2\pi\)[/tex], we need to reduce it within the range [tex]\(0 \leq \theta < 2\pi\)[/tex]:
- Subtract [tex]\(2\pi\)[/tex] from [tex]\(\frac{9\pi}{4}\)[/tex] to bring it into the desired range:
[tex]\[ \frac{9\pi}{4} - 2\pi = \frac{9\pi}{4} - \frac{8\pi}{4} = \frac{\pi}{4} \][/tex]
3. Standard position: Thus, the equivalent angle is [tex]\(\frac{\pi}{4}\)[/tex].
4. Sketch the angle:
- Draw the x-axis and y-axis.
- Starting from the positive x-axis, measure an angle of [tex]\(\frac{\pi}{4}\)[/tex] in the counterclockwise direction.
- This angle, [tex]\(\frac{\pi}{4}\)[/tex], corresponds to 45 degrees.
- Draw a ray from the origin making an angle of [tex]\(\frac{\pi}{4}\)[/tex] with the positive x-axis.
The sketch will show a line originating from the origin and intersecting the first quadrant of the coordinate plane, making a 45-degree angle with the positive x-axis.
1. Identify the range: First, we need to determine the equivalent angle in the standard position, which must lie between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex].
2. Find the equivalent angle: Since [tex]\(\theta = \frac{9\pi}{4}\)[/tex] is more than [tex]\(2\pi\)[/tex], we need to reduce it within the range [tex]\(0 \leq \theta < 2\pi\)[/tex]:
- Subtract [tex]\(2\pi\)[/tex] from [tex]\(\frac{9\pi}{4}\)[/tex] to bring it into the desired range:
[tex]\[ \frac{9\pi}{4} - 2\pi = \frac{9\pi}{4} - \frac{8\pi}{4} = \frac{\pi}{4} \][/tex]
3. Standard position: Thus, the equivalent angle is [tex]\(\frac{\pi}{4}\)[/tex].
4. Sketch the angle:
- Draw the x-axis and y-axis.
- Starting from the positive x-axis, measure an angle of [tex]\(\frac{\pi}{4}\)[/tex] in the counterclockwise direction.
- This angle, [tex]\(\frac{\pi}{4}\)[/tex], corresponds to 45 degrees.
- Draw a ray from the origin making an angle of [tex]\(\frac{\pi}{4}\)[/tex] with the positive x-axis.
The sketch will show a line originating from the origin and intersecting the first quadrant of the coordinate plane, making a 45-degree angle with the positive x-axis.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.