Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the correct system of linear equations representing the situation where Monica's school band raised money through car washes, let's analyze the problem step-by-step:
1. Define Variables:
- Let [tex]\( x \)[/tex] be the number of quick washes.
- Let [tex]\( y \)[/tex] be the number of premium washes.
2. Total Cars Washed:
- According to the problem, the total number of cars washed is 125. This gives us our first equation:
[tex]\[ x + y = 125 \][/tex]
3. Total Money Raised:
- The school band raised a total of [tex]$775 from the car washes. - The quick wash costs $[/tex]5.00, so the money raised from the quick washes is [tex]\( 5x \)[/tex].
- The premium wash costs $8.00, so the money raised from the premium washes is [tex]\( 8y \)[/tex].
- The total money raised from both types of washes is:
[tex]\[ 5x + 8y = 775 \][/tex]
4. Form the System of Equations:
- Combining the equations derived from the total number of cars washed and the total money raised, we have the system of linear equations:
[tex]\[ \begin{cases} x + y = 125 \\ 5x + 8y = 775 \end{cases} \][/tex]
5. Compare with Given Options:
- Compare our derived system with the given options:
1. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x + y = 125 \)[/tex]
2. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x + y = 775 \)[/tex]
3. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x - y = 125 \)[/tex]
4. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x - y = 775 \)[/tex]
- The system we derived matches the first option:
[tex]\[ \boxed{1}\; \text{(5x + 8y = 775 and x + y = 125)} \][/tex]
Hence, the correct system of linear equations representing the situation is:
[tex]\[ \boxed{1} \][/tex]
1. Define Variables:
- Let [tex]\( x \)[/tex] be the number of quick washes.
- Let [tex]\( y \)[/tex] be the number of premium washes.
2. Total Cars Washed:
- According to the problem, the total number of cars washed is 125. This gives us our first equation:
[tex]\[ x + y = 125 \][/tex]
3. Total Money Raised:
- The school band raised a total of [tex]$775 from the car washes. - The quick wash costs $[/tex]5.00, so the money raised from the quick washes is [tex]\( 5x \)[/tex].
- The premium wash costs $8.00, so the money raised from the premium washes is [tex]\( 8y \)[/tex].
- The total money raised from both types of washes is:
[tex]\[ 5x + 8y = 775 \][/tex]
4. Form the System of Equations:
- Combining the equations derived from the total number of cars washed and the total money raised, we have the system of linear equations:
[tex]\[ \begin{cases} x + y = 125 \\ 5x + 8y = 775 \end{cases} \][/tex]
5. Compare with Given Options:
- Compare our derived system with the given options:
1. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x + y = 125 \)[/tex]
2. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x + y = 775 \)[/tex]
3. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x - y = 125 \)[/tex]
4. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x - y = 775 \)[/tex]
- The system we derived matches the first option:
[tex]\[ \boxed{1}\; \text{(5x + 8y = 775 and x + y = 125)} \][/tex]
Hence, the correct system of linear equations representing the situation is:
[tex]\[ \boxed{1} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.