Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Van guessed on all 8 questions of a multiple-choice quiz. Each question has 4 answer choices. What is the probability that he got exactly 1 question correct? Round the answer to the nearest thousandth.

A. 0.033
B. 0.267
C. 0.461
D. 0.733


Sagot :

To determine the probability that Van guessed exactly 1 question correctly out of 8 questions, where each question has 4 answer choices, we can use the binomial probability formula.

The formula for binomial probability is:

[tex]\[ P(k \text{ successes}) = _nC_k \cdot p^k \cdot (1-p)^{n-k} \][/tex]

where:
- [tex]\( n = 8 \)[/tex] (the total number of questions),
- [tex]\( k = 1 \)[/tex] (the number of correct questions we are interested in),
- [tex]\( p = \frac{1}{4} \)[/tex] (the probability of guessing a question correctly, since each question has 4 choices, only one of which is correct),
- [tex]\( 1-p = \frac{3}{4} \)[/tex] (the probability of guessing a question incorrectly).

1. Calculate the binomial coefficient [tex]\(_nC_k\)[/tex]:

The binomial coefficient [tex]\(_nC_k\)[/tex] is calculated as:

[tex]\[ _nC_k = \frac{n!}{k!(n-k)!} \][/tex]

Plugging in the values:

[tex]\[ _8C_1 = \frac{8!}{1!(8-1)!} = \frac{8!}{1!7!} = \frac{8 \cdot 7!}{1! \cdot 7!} = 8 \][/tex]

2. Calculate the probability using the binomial formula:

[tex]\[ P(1 \text{ success}) = _8C_1 \cdot p^1 \cdot (1-p)^{8-1} \][/tex]

[tex]\[ P(1 \text{ success}) = 8 \cdot \left(\frac{1}{4}\right)^1 \cdot \left(\frac{3}{4}\right)^7 \][/tex]

3. Evaluate the expression step-by-step:

[tex]\[ P(1 \text{ success}) = 8 \cdot \frac{1}{4} \cdot \left(\frac{3}{4}\right)^7 \][/tex]

[tex]\[ P(1 \text{ success}) = 8 \cdot \frac{1}{4} \cdot \left(\frac{2187}{16384}\right) \quad \text{(since } \left(\frac{3}{4}\right)^7 = \frac{3^7}{4^7} = \frac{2187}{16384} \text{)} \][/tex]

[tex]\[ P(1 \text{ success}) = 8 \cdot \frac{1}{4} \cdot \frac{2187}{16384} = 2 \cdot \frac{2187}{16384} = \frac{4374}{16384} \][/tex]

[tex]\[ P(1 \text{ success}) \approx 0.2669677734375 \][/tex]

4. Round the answer to the nearest thousandth:

[tex]\[ P(1 \text{ success}) \approx 0.267 \][/tex]

Thus, the probability that Van guessed exactly 1 question correctly is approximately [tex]\( \boxed{0.267} \)[/tex].