At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Solve the system of equations:

[tex]\[
\begin{array}{l}
2.5y + 3x = 27 \\
5x - 2.5y = 5
\end{array}
\][/tex]

What equation is the result of adding the two equations?

A. [tex]\(-8x = 32\)[/tex]

B. [tex]\(8x = 32\)[/tex]

C. [tex]\(5y + 8x = 32\)[/tex]

D. [tex]\(8x - 5y = 32\)[/tex]


Sagot :

Let's solve the system of equations:
[tex]$ \begin{aligned} 1.\quad 2.5y + 3x &= 27 \\ 2.\quad 5x - 2.5y &= 5 \end{aligned} $[/tex]

We want to find the result of adding these two equations.

First, let's write both equations in a more convenient form:
[tex]$ \begin{aligned} 1.\quad 2.5y + 3x &= 27 \\ 2.\quad 5x - 2.5y &= 5 \end{aligned} $[/tex]

When we add these two equations together, we sum both left-hand sides and both right-hand sides:
[tex]$ (2.5y + 3x) + (5x - 2.5y) = 27 + 5 $[/tex]

Simplify the left-hand side:
[tex]$ 2.5y + 5x - 2.5y + 3x = 8x $[/tex]

Combine like terms:
[tex]$ 8x = 32 $[/tex]

This equation represents the result of adding the two given equations together. Therefore, the correct result is:
[tex]$ 8x - 32 = 0 $[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.