Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Alright, let's analyze each of the given systems of linear equations step-by-step and determine the number of solutions for each system.
### System 1:
[tex]\[ y = -2x + 5 \][/tex]
[tex]\[ 2x + y = -7 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -2x + 5 \)[/tex] into [tex]\( 2x + y = -7 \)[/tex]:
[tex]\[ 2x + (-2x + 5) = -7 \][/tex]
2. Simplify the equation:
[tex]\[ 5 = -7 \][/tex]
This results in a contradiction. Therefore, the first system has no solution.
### System 2:
[tex]\[ y = x + 6 \][/tex]
[tex]\[ 3x - 3y = -18 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = x + 6 \)[/tex] into [tex]\( 3x - 3y = -18 \)[/tex]:
[tex]\[ 3x - 3(x + 6) = -18 \][/tex]
2. Simplify the equation:
[tex]\[ 3x - 3x - 18 = -18 \implies -18 = -18 \][/tex]
This is an identity, which means the equations are dependent, and every solution of the first equation is also a solution of the second equation. Thus, the second system has infinitely many solutions.
### System 3:
[tex]\[ y = -4x + 11 \][/tex]
[tex]\[ -6x + y = 11 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -4x + 11 \)[/tex] into [tex]\( -6x + y = 11 \)[/tex]:
[tex]\[ -6x + (-4x + 11) = 11 \][/tex]
2. Simplify the equation:
[tex]\[ -6x - 4x + 11 = 11 \implies -10x + 11 = 11 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ -10x = 0 \implies x = 0 \][/tex]
4. Substitute [tex]\( x = 0 \)[/tex] back into [tex]\( y = -4x + 11 \)[/tex]:
[tex]\[ y = -4(0) + 11 = 11 \][/tex]
So, the solution is [tex]\( (0, 11) \)[/tex]. Therefore, the third system has one solution.
### Summary
- The system [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] has no solution.
- The system [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] has infinitely many solutions.
- The system [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] has one solution.
Thus, the systems match with the number of solutions as follows:
- [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] → no solution
- [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] → infinitely many solutions
- [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] → one solution
### System 1:
[tex]\[ y = -2x + 5 \][/tex]
[tex]\[ 2x + y = -7 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -2x + 5 \)[/tex] into [tex]\( 2x + y = -7 \)[/tex]:
[tex]\[ 2x + (-2x + 5) = -7 \][/tex]
2. Simplify the equation:
[tex]\[ 5 = -7 \][/tex]
This results in a contradiction. Therefore, the first system has no solution.
### System 2:
[tex]\[ y = x + 6 \][/tex]
[tex]\[ 3x - 3y = -18 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = x + 6 \)[/tex] into [tex]\( 3x - 3y = -18 \)[/tex]:
[tex]\[ 3x - 3(x + 6) = -18 \][/tex]
2. Simplify the equation:
[tex]\[ 3x - 3x - 18 = -18 \implies -18 = -18 \][/tex]
This is an identity, which means the equations are dependent, and every solution of the first equation is also a solution of the second equation. Thus, the second system has infinitely many solutions.
### System 3:
[tex]\[ y = -4x + 11 \][/tex]
[tex]\[ -6x + y = 11 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -4x + 11 \)[/tex] into [tex]\( -6x + y = 11 \)[/tex]:
[tex]\[ -6x + (-4x + 11) = 11 \][/tex]
2. Simplify the equation:
[tex]\[ -6x - 4x + 11 = 11 \implies -10x + 11 = 11 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ -10x = 0 \implies x = 0 \][/tex]
4. Substitute [tex]\( x = 0 \)[/tex] back into [tex]\( y = -4x + 11 \)[/tex]:
[tex]\[ y = -4(0) + 11 = 11 \][/tex]
So, the solution is [tex]\( (0, 11) \)[/tex]. Therefore, the third system has one solution.
### Summary
- The system [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] has no solution.
- The system [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] has infinitely many solutions.
- The system [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] has one solution.
Thus, the systems match with the number of solutions as follows:
- [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] → no solution
- [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] → infinitely many solutions
- [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] → one solution
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.