Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate the standard enthalpy change of the reaction [tex]\(\Delta H_{\text{rxn}}^0\)[/tex] for the reaction:
[tex]\[2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g),\][/tex]
we need to apply the following formula:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
1. Identify the standard enthalpies of formation ([tex]\(\Delta H_f^0\)[/tex]) for each compound involved:
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}_2(l)) = -187.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}(l)) = -285.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(O}_2(g)) = 0 \ \text{kJ/mol}\)[/tex]
2. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the products:
- The products are [tex]\(2 \text{H}_2\text{O}(l)\)[/tex] and [tex]\(\text{O}_2(g)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}(l)) + 1 \times \Delta H_f^0 \text{(O}_2(g)). \][/tex]
- Substituting the values:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times (-285.8 \ \text{kJ/mol}) + 1 \times (0 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol}. \][/tex]
3. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the reactants:
- The reactants are [tex]\(2 \text{H}_2\text{O}_2(l)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}_2(l)). \][/tex]
- Substituting the value:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times (-187.8 \ \text{kJ/mol}) = -375.6 \ \text{kJ/mol}. \][/tex]
4. Calculate [tex]\(\Delta H_{\text{rxn}}^0\)[/tex]:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{rxn}}^0 = -571.6 \ \text{kJ/mol} - (-375.6 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol} + 375.6 \ \text{kJ/mol} = -196.0 \ \text{kJ/mol}. \][/tex]
Therefore, the standard enthalpy change for the reaction [tex]\(2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g)\)[/tex] is:
[tex]\[ \Delta H_{\text{rxn}}^0 = -196.0 \ \text{kJ/mol}. \][/tex]
So, the correct answer is:
a. [tex]\(-196.4 \ \text{kJ/mol}\)[/tex]
(Note: The exact number is [tex]\(-196.0 \ \text{kJ/mol}\)[/tex], but considering the options given, [tex]\( \)[/tex] matches closest to the abstract value.)
[tex]\[2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g),\][/tex]
we need to apply the following formula:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
1. Identify the standard enthalpies of formation ([tex]\(\Delta H_f^0\)[/tex]) for each compound involved:
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}_2(l)) = -187.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}(l)) = -285.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(O}_2(g)) = 0 \ \text{kJ/mol}\)[/tex]
2. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the products:
- The products are [tex]\(2 \text{H}_2\text{O}(l)\)[/tex] and [tex]\(\text{O}_2(g)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}(l)) + 1 \times \Delta H_f^0 \text{(O}_2(g)). \][/tex]
- Substituting the values:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times (-285.8 \ \text{kJ/mol}) + 1 \times (0 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol}. \][/tex]
3. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the reactants:
- The reactants are [tex]\(2 \text{H}_2\text{O}_2(l)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}_2(l)). \][/tex]
- Substituting the value:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times (-187.8 \ \text{kJ/mol}) = -375.6 \ \text{kJ/mol}. \][/tex]
4. Calculate [tex]\(\Delta H_{\text{rxn}}^0\)[/tex]:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{rxn}}^0 = -571.6 \ \text{kJ/mol} - (-375.6 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol} + 375.6 \ \text{kJ/mol} = -196.0 \ \text{kJ/mol}. \][/tex]
Therefore, the standard enthalpy change for the reaction [tex]\(2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g)\)[/tex] is:
[tex]\[ \Delta H_{\text{rxn}}^0 = -196.0 \ \text{kJ/mol}. \][/tex]
So, the correct answer is:
a. [tex]\(-196.4 \ \text{kJ/mol}\)[/tex]
(Note: The exact number is [tex]\(-196.0 \ \text{kJ/mol}\)[/tex], but considering the options given, [tex]\( \)[/tex] matches closest to the abstract value.)
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.