Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's go through the solution step-by-step to find the limit of the function as [tex]\( x \)[/tex] approaches 0:
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.