Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the empirical formula of the molecule, we follow these steps:
### Step 1: Determine the number of moles of each element.
#### For Nitrogen (N):
1. The mass of nitrogen given is 24.36 grams.
2. The molar mass of nitrogen (N) is 14.01 grams per mole.
[tex]\[ \text{Moles of N} = \frac{\text{mass of N}}{\text{molar mass of N}} = \frac{24.36 \, \text{g}}{14.01 \, \text{g/mol}} \approx 1.738758 \, \text{moles} \][/tex]
#### For Silver (Ag):
1. The mass of silver given is 62.64 grams.
2. The molar mass of silver (Ag) is 107.87 grams per mole.
[tex]\[ \text{Moles of Ag} = \frac{\text{mass of Ag}}{\text{molar mass of Ag}} = \frac{62.64 \, \text{g}}{107.87 \, \text{g/mol}} \approx 0.580699 \, \text{moles} \][/tex]
### Step 2: Determine the simplest mole ratio of the elements.
1. Calculate the mole ratio of nitrogen to silver:
[tex]\[ \text{Ratio of N} = \frac{\text{moles of N}}{\text{moles of Ag}} = \frac{1.738758}{0.580699} \approx 2.994 \][/tex]
This result is very close to 3.
2. Therefore, the ratio of nitrogen to silver is approximately 3:1.
### Step 3: Write the empirical formula.
Since the mole ratio of nitrogen to silver approximates to 3:1, the empirical formula is:
[tex]\[ AgN_3 \][/tex]
Thus, the correct empirical formula for the molecule is AgN₃.
### Step 1: Determine the number of moles of each element.
#### For Nitrogen (N):
1. The mass of nitrogen given is 24.36 grams.
2. The molar mass of nitrogen (N) is 14.01 grams per mole.
[tex]\[ \text{Moles of N} = \frac{\text{mass of N}}{\text{molar mass of N}} = \frac{24.36 \, \text{g}}{14.01 \, \text{g/mol}} \approx 1.738758 \, \text{moles} \][/tex]
#### For Silver (Ag):
1. The mass of silver given is 62.64 grams.
2. The molar mass of silver (Ag) is 107.87 grams per mole.
[tex]\[ \text{Moles of Ag} = \frac{\text{mass of Ag}}{\text{molar mass of Ag}} = \frac{62.64 \, \text{g}}{107.87 \, \text{g/mol}} \approx 0.580699 \, \text{moles} \][/tex]
### Step 2: Determine the simplest mole ratio of the elements.
1. Calculate the mole ratio of nitrogen to silver:
[tex]\[ \text{Ratio of N} = \frac{\text{moles of N}}{\text{moles of Ag}} = \frac{1.738758}{0.580699} \approx 2.994 \][/tex]
This result is very close to 3.
2. Therefore, the ratio of nitrogen to silver is approximately 3:1.
### Step 3: Write the empirical formula.
Since the mole ratio of nitrogen to silver approximates to 3:1, the empirical formula is:
[tex]\[ AgN_3 \][/tex]
Thus, the correct empirical formula for the molecule is AgN₃.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.