Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, let's break it down into parts and calculate the different forms of energy for each object.
### 1. The Book
Parameters:
- Mass ([tex]\(m\)[/tex]) = 0.75 kg
- Height ([tex]\(h\)[/tex]) = 15 meters
Since the book is resting on a shelf, it has potential energy but no kinetic energy because it is not moving.
Potential Energy (PE):
[tex]\[ PE_{\text{book}} = m \times g \times h = 0.75 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 15 \, \text{m} \][/tex]
Calculations:
[tex]\[ PE_{\text{book}} = 110.25 \, \text{Joules} \][/tex]
### 2. The Brick
Parameters:
- Mass ([tex]\(m\)[/tex]) = 25 kg
- Height ([tex]\(h\)[/tex]) = 4 meters
- Velocity ([tex]\(v\)[/tex]) = 10 meters/second
The brick has both potential energy (because of its height) and kinetic energy (because it is falling).
Potential Energy (PE):
[tex]\[ PE_{\text{brick}} = m \times g \times h = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 4 \, \text{m} \][/tex]
Calculations:
[tex]\[ PE_{\text{brick}} = 980 \, \text{Joules} \][/tex]
Kinetic Energy (KE):
[tex]\[ KE_{\text{brick}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 25 \, \text{kg} \times (10 \, \text{m/s})^2 \][/tex]
Calculations:
[tex]\[ KE_{\text{brick}} = 1250 \, \text{Joules} \][/tex]
Total Energy:
[tex]\[ \text{Total Energy}_{\text{brick}} = PE_{\text{brick}} + KE_{\text{brick}} = 980 \, \text{Joules} + 1250 \, \text{Joules} \][/tex]
Calculations:
[tex]\[ \text{Total Energy}_{\text{brick}} = 2230 \, \text{Joules} \][/tex]
### 3. The Ball
Parameters:
- Mass ([tex]\(m\)[/tex]) = 0.25 kg
- Velocity ([tex]\(v\)[/tex]) = 0 meters/second (it's rolling on a flat surface)
The ball only has kinetic energy, as it is not elevated.
Kinetic Energy (KE):
[tex]\[ KE_{\text{ball}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 0.25 \, \text{kg} \times (0 \, \text{m/s})^2 \][/tex]
Calculations:
[tex]\[ KE_{\text{ball}} = 0 \, \text{Joules} \][/tex]
### Arranging the Energies
Now that we have the energies calculated:
- Ball: [tex]\(0 \, \text{Joules}\)[/tex]
- Book: [tex]\(110.25 \, \text{Joules}\)[/tex]
- Brick: [tex]\(2230 \, \text{Joules}\)[/tex]
We can arrange the objects in order of increasing total energy:
1. A ball with a mass of 0.25 kilograms rolling ([tex]\(0 \, \text{Joules}\)[/tex])
2. A book with a mass of 0.75 kilograms resting on a shelf at a height of 15 meters ([tex]\(110.25 \, \text{Joules}\)[/tex])
3. A brick with a mass of 25 kilograms falling with a velocity of 10 meters/second when it's 4 meters above ground ([tex]\(2230 \, \text{Joules}\)[/tex])
Thus, the correct order, from least energy to most energy, is:
- Ball
- Book
- Brick
### 1. The Book
Parameters:
- Mass ([tex]\(m\)[/tex]) = 0.75 kg
- Height ([tex]\(h\)[/tex]) = 15 meters
Since the book is resting on a shelf, it has potential energy but no kinetic energy because it is not moving.
Potential Energy (PE):
[tex]\[ PE_{\text{book}} = m \times g \times h = 0.75 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 15 \, \text{m} \][/tex]
Calculations:
[tex]\[ PE_{\text{book}} = 110.25 \, \text{Joules} \][/tex]
### 2. The Brick
Parameters:
- Mass ([tex]\(m\)[/tex]) = 25 kg
- Height ([tex]\(h\)[/tex]) = 4 meters
- Velocity ([tex]\(v\)[/tex]) = 10 meters/second
The brick has both potential energy (because of its height) and kinetic energy (because it is falling).
Potential Energy (PE):
[tex]\[ PE_{\text{brick}} = m \times g \times h = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 4 \, \text{m} \][/tex]
Calculations:
[tex]\[ PE_{\text{brick}} = 980 \, \text{Joules} \][/tex]
Kinetic Energy (KE):
[tex]\[ KE_{\text{brick}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 25 \, \text{kg} \times (10 \, \text{m/s})^2 \][/tex]
Calculations:
[tex]\[ KE_{\text{brick}} = 1250 \, \text{Joules} \][/tex]
Total Energy:
[tex]\[ \text{Total Energy}_{\text{brick}} = PE_{\text{brick}} + KE_{\text{brick}} = 980 \, \text{Joules} + 1250 \, \text{Joules} \][/tex]
Calculations:
[tex]\[ \text{Total Energy}_{\text{brick}} = 2230 \, \text{Joules} \][/tex]
### 3. The Ball
Parameters:
- Mass ([tex]\(m\)[/tex]) = 0.25 kg
- Velocity ([tex]\(v\)[/tex]) = 0 meters/second (it's rolling on a flat surface)
The ball only has kinetic energy, as it is not elevated.
Kinetic Energy (KE):
[tex]\[ KE_{\text{ball}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 0.25 \, \text{kg} \times (0 \, \text{m/s})^2 \][/tex]
Calculations:
[tex]\[ KE_{\text{ball}} = 0 \, \text{Joules} \][/tex]
### Arranging the Energies
Now that we have the energies calculated:
- Ball: [tex]\(0 \, \text{Joules}\)[/tex]
- Book: [tex]\(110.25 \, \text{Joules}\)[/tex]
- Brick: [tex]\(2230 \, \text{Joules}\)[/tex]
We can arrange the objects in order of increasing total energy:
1. A ball with a mass of 0.25 kilograms rolling ([tex]\(0 \, \text{Joules}\)[/tex])
2. A book with a mass of 0.75 kilograms resting on a shelf at a height of 15 meters ([tex]\(110.25 \, \text{Joules}\)[/tex])
3. A brick with a mass of 25 kilograms falling with a velocity of 10 meters/second when it's 4 meters above ground ([tex]\(2230 \, \text{Joules}\)[/tex])
Thus, the correct order, from least energy to most energy, is:
- Ball
- Book
- Brick
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.