Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\( |2x + 3| = 17 \)[/tex], you need to consider the definition of absolute value. The absolute value equation [tex]\( |A| = B \)[/tex] implies two separate equations: [tex]\( A = B \)[/tex] and [tex]\( A = -B \)[/tex].
Here's the step-by-step process to solve [tex]\( |2x + 3| = 17 \)[/tex]:
1. Consider the first case:
[tex]\[ 2x + 3 = 17 \][/tex]
2. Solve for [tex]\( x \)[/tex] in this first case:
[tex]\[ 2x + 3 = 17 \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = 17 - 3 \][/tex]
Simplify:
[tex]\[ 2x = 14 \][/tex]
Divide both sides by 2:
[tex]\[ x = \frac{14}{2} \][/tex]
Simplify:
[tex]\[ x = 7 \][/tex]
3. Now consider the second case:
[tex]\[ 2x + 3 = -17 \][/tex]
4. Solve for [tex]\( x \)[/tex] in the second case:
[tex]\[ 2x + 3 = -17 \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = -17 - 3 \][/tex]
Simplify:
[tex]\[ 2x = -20 \][/tex]
Divide both sides by 2:
[tex]\[ x = \frac{-20}{2} \][/tex]
Simplify:
[tex]\[ x = -10 \][/tex]
Therefore, the solutions to the equation [tex]\( |2x + 3| = 17 \)[/tex] are [tex]\( x = 7 \)[/tex] and [tex]\( x = -10 \)[/tex].
So, the correct answer is:
A. [tex]\( x = 7 \)[/tex] and [tex]\( x = -10 \)[/tex].
Here's the step-by-step process to solve [tex]\( |2x + 3| = 17 \)[/tex]:
1. Consider the first case:
[tex]\[ 2x + 3 = 17 \][/tex]
2. Solve for [tex]\( x \)[/tex] in this first case:
[tex]\[ 2x + 3 = 17 \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = 17 - 3 \][/tex]
Simplify:
[tex]\[ 2x = 14 \][/tex]
Divide both sides by 2:
[tex]\[ x = \frac{14}{2} \][/tex]
Simplify:
[tex]\[ x = 7 \][/tex]
3. Now consider the second case:
[tex]\[ 2x + 3 = -17 \][/tex]
4. Solve for [tex]\( x \)[/tex] in the second case:
[tex]\[ 2x + 3 = -17 \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = -17 - 3 \][/tex]
Simplify:
[tex]\[ 2x = -20 \][/tex]
Divide both sides by 2:
[tex]\[ x = \frac{-20}{2} \][/tex]
Simplify:
[tex]\[ x = -10 \][/tex]
Therefore, the solutions to the equation [tex]\( |2x + 3| = 17 \)[/tex] are [tex]\( x = 7 \)[/tex] and [tex]\( x = -10 \)[/tex].
So, the correct answer is:
A. [tex]\( x = 7 \)[/tex] and [tex]\( x = -10 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.