Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the type of equation we are dealing with, let's start by simplifying and analyzing the given equation:
The given equation is:
[tex]\[ 4(x + 3) = 40 \][/tex]
First, let's distribute the 4 on the left side:
[tex]\[ 4 \cdot x + 4 \cdot 3 = 40 \][/tex]
[tex]\[ 4x + 12 = 40 \][/tex]
Next, let's isolate the variable [tex]\( x \)[/tex]. We can do this by first subtracting 12 from both sides of the equation:
[tex]\[ 4x + 12 - 12 = 40 - 12 \][/tex]
[tex]\[ 4x = 28 \][/tex]
Then, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{28}{4} \][/tex]
[tex]\[ x = 7 \][/tex]
Now that we have simplified and solved the equation, we can see that it is of the form [tex]\( ax + b = c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( x \)[/tex] is the variable.
Therefore, the given equation is a linear equation.
So, the type of equation is:
[tex]\[ \boxed{\text{Linear}} \][/tex]
The given equation is:
[tex]\[ 4(x + 3) = 40 \][/tex]
First, let's distribute the 4 on the left side:
[tex]\[ 4 \cdot x + 4 \cdot 3 = 40 \][/tex]
[tex]\[ 4x + 12 = 40 \][/tex]
Next, let's isolate the variable [tex]\( x \)[/tex]. We can do this by first subtracting 12 from both sides of the equation:
[tex]\[ 4x + 12 - 12 = 40 - 12 \][/tex]
[tex]\[ 4x = 28 \][/tex]
Then, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{28}{4} \][/tex]
[tex]\[ x = 7 \][/tex]
Now that we have simplified and solved the equation, we can see that it is of the form [tex]\( ax + b = c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( x \)[/tex] is the variable.
Therefore, the given equation is a linear equation.
So, the type of equation is:
[tex]\[ \boxed{\text{Linear}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.