Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which polynomial model best fits the given temperature data recorded every 2 hours over a 12-hour period, we will evaluate the error (residuals) for each proposed model. The model with the smallest residuals can be considered the most accurate representation of the data.
Given data:
- Time (hours): [tex]\([6, 8, 10, 12, 14, 16, 18]\)[/tex]
- Temperature ([tex]\({ }^{\circ}\)[/tex]C): [tex]\([3.88, 6.48, 9.37, 10.42, 8.79, 4.96, 0.69]\)[/tex]
The provided polynomial models are:
1. [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
2. [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
3. [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
4. [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
### Calculation of Residuals
Residuals can be computed as the sum of squared differences between the observed temperatures and the corresponding model predictions. Here's the summary of the calculations:
1. Model 1: [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
- Residuals: [tex]\( 17546650936.85266 \)[/tex]
2. Model 2: [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
- Residuals: [tex]\( 17525697845.91388 \)[/tex]
3. Model 3: [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
- Residuals: [tex]\( 4862099634436.566 \)[/tex]
4. Model 4: [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
- Residuals: [tex]\( 4862418327932.426 \)[/tex]
### Determination of Best Fit
We compare the residuals for each model:
- Model 1 residuals: [tex]\( 17546650936.85266 \)[/tex]
- Model 2 residuals: [tex]\( 17525697845.91388 \)[/tex]
- Model 3 residuals: [tex]\( 4862099634436.566 \)[/tex]
- Model 4 residuals: [tex]\( 4862418327932.426 \)[/tex]
The model with the smallest residual, and therefore the best fit, is Model 2: [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex].
Thus, the polynomial model that best fits the given temperature data is:
[tex]\[ C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \][/tex]
Given data:
- Time (hours): [tex]\([6, 8, 10, 12, 14, 16, 18]\)[/tex]
- Temperature ([tex]\({ }^{\circ}\)[/tex]C): [tex]\([3.88, 6.48, 9.37, 10.42, 8.79, 4.96, 0.69]\)[/tex]
The provided polynomial models are:
1. [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
2. [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
3. [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
4. [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
### Calculation of Residuals
Residuals can be computed as the sum of squared differences between the observed temperatures and the corresponding model predictions. Here's the summary of the calculations:
1. Model 1: [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
- Residuals: [tex]\( 17546650936.85266 \)[/tex]
2. Model 2: [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
- Residuals: [tex]\( 17525697845.91388 \)[/tex]
3. Model 3: [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex]
- Residuals: [tex]\( 4862099634436.566 \)[/tex]
4. Model 4: [tex]\( C(x) = 0.0034x^4 - 0.167x^3 + 2.76x^2 - 16.91x \)[/tex]
- Residuals: [tex]\( 4862418327932.426 \)[/tex]
### Determination of Best Fit
We compare the residuals for each model:
- Model 1 residuals: [tex]\( 17546650936.85266 \)[/tex]
- Model 2 residuals: [tex]\( 17525697845.91388 \)[/tex]
- Model 3 residuals: [tex]\( 4862099634436.566 \)[/tex]
- Model 4 residuals: [tex]\( 4862418327932.426 \)[/tex]
The model with the smallest residual, and therefore the best fit, is Model 2: [tex]\( C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \)[/tex].
Thus, the polynomial model that best fits the given temperature data is:
[tex]\[ C(x) = 0.167x^3 + 2.76x^2 - 16.91x + 38.87 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.