Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the equation of the perpendicular bisector of a line segment, follow these steps:
1. Identify the midpoint and the slope of the original line segment:
- The midpoint is given as [tex]\((-1, -2)\)[/tex].
- The original line segment is defined by the equations: [tex]\(y = -4x - 4\)[/tex] and [tex]\(y = -4x - 6\)[/tex].
- Notice that both lines share the same slope, which is [tex]\(-4\)[/tex].
2. Find the slope of the perpendicular bisector:
- The slope of a line perpendicular to another line is the negative reciprocal of the original slope.
- The original slope is [tex]\(-4\)[/tex], so the perpendicular slope (m) is:
[tex]\[ m = -\frac{1}{-4} = \frac{1}{4} \][/tex]
3. Use the point-slope form of the equation to find the equation of the perpendicular bisector:
- The point-slope form is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the midpoint ([tex]\(-1, -2\)[/tex]) and the perpendicular slope [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ y - (-2) = \frac{1}{4}(x - (-1)) \][/tex]
- Simplify the equation:
[tex]\[ y + 2 = \frac{1}{4}(x + 1) \][/tex]
- Distribute [tex]\(\frac{1}{4}\)[/tex] on the right side:
[tex]\[ y + 2 = \frac{1}{4}x + \frac{1}{4} \][/tex]
4. Convert the equation to slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Isolate [tex]\(y\)[/tex] on one side of the equation:
[tex]\[ y = \frac{1}{4}x + \frac{1}{4} - 2 \][/tex]
- Simplify the constants on the right side:
[tex]\[ y = \frac{1}{4}x + \frac{1}{4} - \frac{8}{4} \][/tex]
[tex]\[ y = \frac{1}{4}x - \frac{7}{4} \][/tex]
The equation of the perpendicular bisector in slope-intercept form is:
[tex]\[ y = \frac{1}{4} x - \frac{7}{4} \][/tex]
1. Identify the midpoint and the slope of the original line segment:
- The midpoint is given as [tex]\((-1, -2)\)[/tex].
- The original line segment is defined by the equations: [tex]\(y = -4x - 4\)[/tex] and [tex]\(y = -4x - 6\)[/tex].
- Notice that both lines share the same slope, which is [tex]\(-4\)[/tex].
2. Find the slope of the perpendicular bisector:
- The slope of a line perpendicular to another line is the negative reciprocal of the original slope.
- The original slope is [tex]\(-4\)[/tex], so the perpendicular slope (m) is:
[tex]\[ m = -\frac{1}{-4} = \frac{1}{4} \][/tex]
3. Use the point-slope form of the equation to find the equation of the perpendicular bisector:
- The point-slope form is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the midpoint ([tex]\(-1, -2\)[/tex]) and the perpendicular slope [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ y - (-2) = \frac{1}{4}(x - (-1)) \][/tex]
- Simplify the equation:
[tex]\[ y + 2 = \frac{1}{4}(x + 1) \][/tex]
- Distribute [tex]\(\frac{1}{4}\)[/tex] on the right side:
[tex]\[ y + 2 = \frac{1}{4}x + \frac{1}{4} \][/tex]
4. Convert the equation to slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Isolate [tex]\(y\)[/tex] on one side of the equation:
[tex]\[ y = \frac{1}{4}x + \frac{1}{4} - 2 \][/tex]
- Simplify the constants on the right side:
[tex]\[ y = \frac{1}{4}x + \frac{1}{4} - \frac{8}{4} \][/tex]
[tex]\[ y = \frac{1}{4}x - \frac{7}{4} \][/tex]
The equation of the perpendicular bisector in slope-intercept form is:
[tex]\[ y = \frac{1}{4} x - \frac{7}{4} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.