Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
a) To find the probability of rolling a total of 4 with a pair of fair dice, we first note all possible outcomes. Each die has 6 faces, so with two dice, there are 6 * 6 = 36 possible outcomes.
Next, we identify the outcomes that sum to 4. They are:
1. (1, 3)
2. (2, 2)
3. (3, 1)
Thus, there are 3 outcomes that result in a total of 4. The probability of rolling a total of 4 with two dice is the number of favorable outcomes divided by the total number of possible outcomes. In fraction form, this probability is:
[tex]\[ \frac{3}{36} = \frac{1}{12} \][/tex]
So, the probability of rolling a total of 4 is [tex]\( \frac{1}{12} \)[/tex].
b) To determine how many times you would expect to roll a total of 4 in 360 rolls of the dice, we use the probability found in part (a). The expected number of times to roll a 4 is given by:
[tex]\[ \text{Expected number of times} = \text{Probability} \times \text{Number of rolls} \][/tex]
Substituting the values we have:
[tex]\[ \text{Expected number of times} = \left( \frac{1}{12} \right) \times 360 = 30 \][/tex]
Therefore, if you roll a pair of fair dice 360 times, you would expect to roll a total of 4 approximately 30 times.
Next, we identify the outcomes that sum to 4. They are:
1. (1, 3)
2. (2, 2)
3. (3, 1)
Thus, there are 3 outcomes that result in a total of 4. The probability of rolling a total of 4 with two dice is the number of favorable outcomes divided by the total number of possible outcomes. In fraction form, this probability is:
[tex]\[ \frac{3}{36} = \frac{1}{12} \][/tex]
So, the probability of rolling a total of 4 is [tex]\( \frac{1}{12} \)[/tex].
b) To determine how many times you would expect to roll a total of 4 in 360 rolls of the dice, we use the probability found in part (a). The expected number of times to roll a 4 is given by:
[tex]\[ \text{Expected number of times} = \text{Probability} \times \text{Number of rolls} \][/tex]
Substituting the values we have:
[tex]\[ \text{Expected number of times} = \left( \frac{1}{12} \right) \times 360 = 30 \][/tex]
Therefore, if you roll a pair of fair dice 360 times, you would expect to roll a total of 4 approximately 30 times.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.