At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the equation for Lot A, we will start by observing the pattern in the given data.
The costs to park for different days for Lot A are as follows:
- On day 1, the cost is \[tex]$16. - On day 2, the cost is \$[/tex]20.
- On day 3, the cost is \[tex]$24. - On day 4, the cost is \$[/tex]28.
We can see that the cost increases by \[tex]$4 each additional day. To find the linear equation representing the cost \(y\) versus the number of days \(x\) for Lot A, we use the form of a linear equation: \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept. ### Step-by-Step Process 1. Determine the slope \(m\): - The slope \(m\) represents the rate of change in cost per day. - From the data, we notice the cost increases by \$[/tex]4 each day. Therefore, [tex]\(m = 4\)[/tex].
2. Determine the y-intercept [tex]\(b\)[/tex]:
- To find the y-intercept [tex]\(b\)[/tex], we use one of the points given in the data. Let's use the point (1, 16) (i.e., on day 1, the cost is \$16).
- Plugging this point into the equation [tex]\(y = mx + b\)[/tex]:
[tex]\[ 16 = 4(1) + b \\ 16 = 4 + b \\ b = 16 - 4 \\ b = 12 \][/tex]
3. Write the equation:
- Using the slope [tex]\(m = 4\)[/tex] and the y-intercept [tex]\(b = 12\)[/tex], we can write the equation for Lot A:
[tex]\[ y = 4x + 12 \][/tex]
Therefore, the other equation in the system, representing the cost to park in Lot A, is:
[tex]\[ y = 4x + 12 \][/tex]
For Lot B, we are already provided with the equation [tex]\(y = 6x\)[/tex].
Thus, the system of linear equations used to determine on which day the cost to park is the same for both lots is:
[tex]\[ \begin{cases} y = 6x \quad \text{(Lot B)} \\ y = 4x + 12 \quad \text{(Lot A)} \end{cases} \][/tex]
The costs to park for different days for Lot A are as follows:
- On day 1, the cost is \[tex]$16. - On day 2, the cost is \$[/tex]20.
- On day 3, the cost is \[tex]$24. - On day 4, the cost is \$[/tex]28.
We can see that the cost increases by \[tex]$4 each additional day. To find the linear equation representing the cost \(y\) versus the number of days \(x\) for Lot A, we use the form of a linear equation: \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept. ### Step-by-Step Process 1. Determine the slope \(m\): - The slope \(m\) represents the rate of change in cost per day. - From the data, we notice the cost increases by \$[/tex]4 each day. Therefore, [tex]\(m = 4\)[/tex].
2. Determine the y-intercept [tex]\(b\)[/tex]:
- To find the y-intercept [tex]\(b\)[/tex], we use one of the points given in the data. Let's use the point (1, 16) (i.e., on day 1, the cost is \$16).
- Plugging this point into the equation [tex]\(y = mx + b\)[/tex]:
[tex]\[ 16 = 4(1) + b \\ 16 = 4 + b \\ b = 16 - 4 \\ b = 12 \][/tex]
3. Write the equation:
- Using the slope [tex]\(m = 4\)[/tex] and the y-intercept [tex]\(b = 12\)[/tex], we can write the equation for Lot A:
[tex]\[ y = 4x + 12 \][/tex]
Therefore, the other equation in the system, representing the cost to park in Lot A, is:
[tex]\[ y = 4x + 12 \][/tex]
For Lot B, we are already provided with the equation [tex]\(y = 6x\)[/tex].
Thus, the system of linear equations used to determine on which day the cost to park is the same for both lots is:
[tex]\[ \begin{cases} y = 6x \quad \text{(Lot B)} \\ y = 4x + 12 \quad \text{(Lot A)} \end{cases} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.