Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find [tex]\( f(g(x)) \)[/tex] given that [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex], let us first understand what it means for two functions to be inverses of each other.
Two functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are considered inverse functions if:
[tex]\[ f(g(x)) = x \quad \text{for all } x \text{ in the domain of } g \][/tex]
[tex]\[ g(f(x)) = x \quad \text{for all } x \text{ in the domain of } f \][/tex]
This property defines the core relationship between a function and its inverse: they effectively undo each other's operations.
Therefore, if [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex], inputting [tex]\( g(x) \)[/tex] into [tex]\( f \)[/tex] will yield:
[tex]\[ f(g(x)) = x \][/tex]
This result holds true for any [tex]\( x \)[/tex]. The function [tex]\( f \)[/tex] composed with its inverse [tex]\( g \)[/tex] simply returns the input [tex]\( x \)[/tex] itself, exemplifying the defining characteristic of inverse functions.
Thus, the final solution to the problem is:
[tex]\[ f(g(x)) = x \][/tex]
This identity succinctly expresses the behavior expected when dealing with a function and its inverse, confirming that applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] returns [tex]\( x \)[/tex].
Two functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are considered inverse functions if:
[tex]\[ f(g(x)) = x \quad \text{for all } x \text{ in the domain of } g \][/tex]
[tex]\[ g(f(x)) = x \quad \text{for all } x \text{ in the domain of } f \][/tex]
This property defines the core relationship between a function and its inverse: they effectively undo each other's operations.
Therefore, if [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex], inputting [tex]\( g(x) \)[/tex] into [tex]\( f \)[/tex] will yield:
[tex]\[ f(g(x)) = x \][/tex]
This result holds true for any [tex]\( x \)[/tex]. The function [tex]\( f \)[/tex] composed with its inverse [tex]\( g \)[/tex] simply returns the input [tex]\( x \)[/tex] itself, exemplifying the defining characteristic of inverse functions.
Thus, the final solution to the problem is:
[tex]\[ f(g(x)) = x \][/tex]
This identity succinctly expresses the behavior expected when dealing with a function and its inverse, confirming that applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] returns [tex]\( x \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.