Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the domain of the function [tex]\( y = \sqrt{x} \)[/tex], we need to consider the properties of the square root function.
The square root function is defined for all non-negative real numbers. This means that the value inside the square root (i.e., [tex]\( x \)[/tex]) must be greater than or equal to zero. In other words, [tex]\( \sqrt{x} \)[/tex] is defined if and only if [tex]\( x \geq 0 \)[/tex].
Let’s now analyze the four options given to see which one correctly describes this condition:
1. [tex]\( -\infty < x < \infty \)[/tex]: This option suggests that [tex]\( x \)[/tex] can be any real number, including negative values. However, [tex]\( \sqrt{x} \)[/tex] is not defined for negative values of [tex]\( x \)[/tex]. Therefore, this option is incorrect.
2. [tex]\( 0 < x < \infty \)[/tex]: This option suggests that [tex]\( x \)[/tex] must be positive but not zero. However, [tex]\( \sqrt{x} \)[/tex] is defined for [tex]\( x = 0 \)[/tex] because [tex]\( \sqrt{0} = 0 \)[/tex]. Therefore, this option is not entirely correct because it excludes zero.
3. [tex]\( 0 \leq x < \infty \)[/tex]: This option includes all non-negative real numbers, starting from zero and extending to infinity. Since [tex]\( \sqrt{x} \)[/tex] is defined for all [tex]\( x \)[/tex] in this range, this option correctly represents the domain of the function.
4. [tex]\( 1 \leq x < \infty \)[/tex]: This option suggests that [tex]\( x \)[/tex] must be greater than or equal to 1. This excludes all values from 0 to 1, which are part of the domain of [tex]\( \sqrt{x} \)[/tex]. Therefore, this option is incorrect.
Thus, the correct domain of the function [tex]\( y = \sqrt{x} \)[/tex] is [tex]\( 0 \leq x < \infty \)[/tex].
The correct answer is:
[tex]\[ \boxed{0 \leq x < \infty} \][/tex]
The square root function is defined for all non-negative real numbers. This means that the value inside the square root (i.e., [tex]\( x \)[/tex]) must be greater than or equal to zero. In other words, [tex]\( \sqrt{x} \)[/tex] is defined if and only if [tex]\( x \geq 0 \)[/tex].
Let’s now analyze the four options given to see which one correctly describes this condition:
1. [tex]\( -\infty < x < \infty \)[/tex]: This option suggests that [tex]\( x \)[/tex] can be any real number, including negative values. However, [tex]\( \sqrt{x} \)[/tex] is not defined for negative values of [tex]\( x \)[/tex]. Therefore, this option is incorrect.
2. [tex]\( 0 < x < \infty \)[/tex]: This option suggests that [tex]\( x \)[/tex] must be positive but not zero. However, [tex]\( \sqrt{x} \)[/tex] is defined for [tex]\( x = 0 \)[/tex] because [tex]\( \sqrt{0} = 0 \)[/tex]. Therefore, this option is not entirely correct because it excludes zero.
3. [tex]\( 0 \leq x < \infty \)[/tex]: This option includes all non-negative real numbers, starting from zero and extending to infinity. Since [tex]\( \sqrt{x} \)[/tex] is defined for all [tex]\( x \)[/tex] in this range, this option correctly represents the domain of the function.
4. [tex]\( 1 \leq x < \infty \)[/tex]: This option suggests that [tex]\( x \)[/tex] must be greater than or equal to 1. This excludes all values from 0 to 1, which are part of the domain of [tex]\( \sqrt{x} \)[/tex]. Therefore, this option is incorrect.
Thus, the correct domain of the function [tex]\( y = \sqrt{x} \)[/tex] is [tex]\( 0 \leq x < \infty \)[/tex].
The correct answer is:
[tex]\[ \boxed{0 \leq x < \infty} \][/tex]
Answer:
A.
Step-by-step explanation:
The square root can be any value between negative intinity and positive infinity.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.