Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's go through the process of modeling the hours of daylight with the information provided.
Given data:
- The number of hours of daylight on the summer solstice: [tex]\( y_{\text{summer solstice}} = 15.3 \)[/tex]
- The number of hours of daylight on the winter solstice: [tex]\( y_{\text{winter solstice}} = 9.1 \)[/tex]
- The period of the cycle: [tex]\( T = 365 \)[/tex] days
- The day of the year for the summer solstice: [tex]\( x_{\text{summer solstice}} = 172 \)[/tex]
- The day of the year for the winter solstice: [tex]\( x_{\text{winter solstice}} = 355 \)[/tex]
To create a function [tex]\( y = a \cos\left( \omega (x - \phi) \right) + D \)[/tex] that models the daylight hours, we need to determine:
1. The vertical shift ([tex]\( D \)[/tex]).
2. The amplitude ([tex]\( A \)[/tex]).
3. The angular frequency ([tex]\( \omega \)[/tex]).
4. The phase shift ([tex]\( \phi \)[/tex]).
Step-by-step solution:
1. Vertical Shift ([tex]\( D \)[/tex]):
The vertical shift is the average of the maximum and minimum values of the function.
[tex]\[ D = \frac{y_{\text{summer solstice}} + y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ D = \frac{15.3 + 9.1}{2} = 12.2 \][/tex]
2. Amplitude ([tex]\( A \)[/tex]):
The amplitude is half the difference between the maximum and minimum values of the function.
[tex]\[ A = \frac{y_{\text{summer solstice}} - y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ A = \frac{15.3 - 9.1}{2} = 3.1 \][/tex]
3. Angular Frequency ([tex]\( \omega \)[/tex]):
The angular frequency is related to the period of the function.
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
Given the period [tex]\( T = 365 \)[/tex] days:
[tex]\[ \omega = \frac{2\pi}{365} \approx 0.017214 \][/tex]
4. Phase Shift ([tex]\( \phi \)[/tex]):
The maximum value occurs at [tex]\( x = 172 \)[/tex] (the summer solstice). In a cosine function, this corresponds to [tex]\( \cos(0) = 1 \)[/tex], so we need to solve for [tex]\( \phi \)[/tex] when [tex]\( x = 172 \)[/tex].
[tex]\[ \omega (x_{\text{summer solstice}} - \phi) = 0 \][/tex]
Therefore:
[tex]\[ 0.017214 \times (172 - \phi) = 0 \][/tex]
Hence:
[tex]\[ \phi = 172 \][/tex]
Putting it all together, our function [tex]\( y = A \cos(\omega (x - \phi)) + D \)[/tex] becomes:
[tex]\[ y = 3.1 \cos \left( \frac{2\pi}{365} (x - 172) \right) + 12.2 \][/tex]
Given data:
- The number of hours of daylight on the summer solstice: [tex]\( y_{\text{summer solstice}} = 15.3 \)[/tex]
- The number of hours of daylight on the winter solstice: [tex]\( y_{\text{winter solstice}} = 9.1 \)[/tex]
- The period of the cycle: [tex]\( T = 365 \)[/tex] days
- The day of the year for the summer solstice: [tex]\( x_{\text{summer solstice}} = 172 \)[/tex]
- The day of the year for the winter solstice: [tex]\( x_{\text{winter solstice}} = 355 \)[/tex]
To create a function [tex]\( y = a \cos\left( \omega (x - \phi) \right) + D \)[/tex] that models the daylight hours, we need to determine:
1. The vertical shift ([tex]\( D \)[/tex]).
2. The amplitude ([tex]\( A \)[/tex]).
3. The angular frequency ([tex]\( \omega \)[/tex]).
4. The phase shift ([tex]\( \phi \)[/tex]).
Step-by-step solution:
1. Vertical Shift ([tex]\( D \)[/tex]):
The vertical shift is the average of the maximum and minimum values of the function.
[tex]\[ D = \frac{y_{\text{summer solstice}} + y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ D = \frac{15.3 + 9.1}{2} = 12.2 \][/tex]
2. Amplitude ([tex]\( A \)[/tex]):
The amplitude is half the difference between the maximum and minimum values of the function.
[tex]\[ A = \frac{y_{\text{summer solstice}} - y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ A = \frac{15.3 - 9.1}{2} = 3.1 \][/tex]
3. Angular Frequency ([tex]\( \omega \)[/tex]):
The angular frequency is related to the period of the function.
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
Given the period [tex]\( T = 365 \)[/tex] days:
[tex]\[ \omega = \frac{2\pi}{365} \approx 0.017214 \][/tex]
4. Phase Shift ([tex]\( \phi \)[/tex]):
The maximum value occurs at [tex]\( x = 172 \)[/tex] (the summer solstice). In a cosine function, this corresponds to [tex]\( \cos(0) = 1 \)[/tex], so we need to solve for [tex]\( \phi \)[/tex] when [tex]\( x = 172 \)[/tex].
[tex]\[ \omega (x_{\text{summer solstice}} - \phi) = 0 \][/tex]
Therefore:
[tex]\[ 0.017214 \times (172 - \phi) = 0 \][/tex]
Hence:
[tex]\[ \phi = 172 \][/tex]
Putting it all together, our function [tex]\( y = A \cos(\omega (x - \phi)) + D \)[/tex] becomes:
[tex]\[ y = 3.1 \cos \left( \frac{2\pi}{365} (x - 172) \right) + 12.2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.