Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the direction of the acceleration of the ball after being hit by the bat, we need to follow these steps:
### 1. Determine the initial and final velocity components
We start by finding the x and y components of both the initial and final velocities.
Initial Velocity (before the hit):
- Magnitude: [tex]\(v_1 = 2.15 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_1 = -72.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{1x} = v_1 \cos(\theta_1) = 2.15 \cos(-72.0^\circ) \approx 0.664 \, \text{m/s} \][/tex]
[tex]\[ v_{1y} = v_1 \sin(\theta_1) = 2.15 \sin(-72.0^\circ) \approx -2.045 \, \text{m/s} \][/tex]
Final Velocity (after the hit):
- Magnitude: [tex]\(v_2 = 3.12 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_2 = 135.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{2x} = v_2 \cos(\theta_2) = 3.12 \cos(135.0^\circ) \approx -2.206 \, \text{m/s} \][/tex]
[tex]\[ v_{2y} = v_2 \sin(\theta_2) = 3.12 \sin(135.0^\circ) \approx 2.206 \, \text{m/s} \][/tex]
### 2. Calculate the change in velocity components
Next, we find the change in the velocity components (i.e., the differences between the final and initial components):
[tex]\[ \Delta v_x = v_{2x} - v_{1x} = -2.206 - 0.664 \approx -2.871 \, \text{m/s} \][/tex]
[tex]\[ \Delta v_y = v_{2y} - v_{1y} = 2.206 - (-2.045) \approx 4.251 \, \text{m/s} \][/tex]
### 3. Determine the acceleration components
Acceleration [tex]\(a_x\)[/tex] and [tex]\(a_y\)[/tex] can be obtained by dividing these changes in velocity by the time of contact [tex]\( t = 0.28 \, \text{s} \)[/tex]:
[tex]\[ a_x = \frac{\Delta v_x}{t} = \frac{-2.871}{0.28} \approx -10.252 \, \text{m/s}^2 \][/tex]
[tex]\[ a_y = \frac{\Delta v_y}{t} = \frac{4.251}{0.28} \approx 15.182 \, \text{m/s}^2 \][/tex]
### 4. Calculate the direction of the acceleration
Finally, we find the direction (angle) [tex]\(\theta_{\text{acc}}\)[/tex] of the acceleration using the tangent function:
[tex]\[ \theta_{\text{acc}} = \tan^{-2} \left(\frac{a_y}{a_x}\right) = \tan^{-1}\left(\frac{15.182}{-10.252}\right) \][/tex]
This gives us:
[tex]\[ \theta_{\text{acc}} \approx 124.03^\circ \][/tex]
So, the direction of the acceleration of the ball is approximately [tex]\( 124.03^\circ \)[/tex].
### 1. Determine the initial and final velocity components
We start by finding the x and y components of both the initial and final velocities.
Initial Velocity (before the hit):
- Magnitude: [tex]\(v_1 = 2.15 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_1 = -72.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{1x} = v_1 \cos(\theta_1) = 2.15 \cos(-72.0^\circ) \approx 0.664 \, \text{m/s} \][/tex]
[tex]\[ v_{1y} = v_1 \sin(\theta_1) = 2.15 \sin(-72.0^\circ) \approx -2.045 \, \text{m/s} \][/tex]
Final Velocity (after the hit):
- Magnitude: [tex]\(v_2 = 3.12 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_2 = 135.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{2x} = v_2 \cos(\theta_2) = 3.12 \cos(135.0^\circ) \approx -2.206 \, \text{m/s} \][/tex]
[tex]\[ v_{2y} = v_2 \sin(\theta_2) = 3.12 \sin(135.0^\circ) \approx 2.206 \, \text{m/s} \][/tex]
### 2. Calculate the change in velocity components
Next, we find the change in the velocity components (i.e., the differences between the final and initial components):
[tex]\[ \Delta v_x = v_{2x} - v_{1x} = -2.206 - 0.664 \approx -2.871 \, \text{m/s} \][/tex]
[tex]\[ \Delta v_y = v_{2y} - v_{1y} = 2.206 - (-2.045) \approx 4.251 \, \text{m/s} \][/tex]
### 3. Determine the acceleration components
Acceleration [tex]\(a_x\)[/tex] and [tex]\(a_y\)[/tex] can be obtained by dividing these changes in velocity by the time of contact [tex]\( t = 0.28 \, \text{s} \)[/tex]:
[tex]\[ a_x = \frac{\Delta v_x}{t} = \frac{-2.871}{0.28} \approx -10.252 \, \text{m/s}^2 \][/tex]
[tex]\[ a_y = \frac{\Delta v_y}{t} = \frac{4.251}{0.28} \approx 15.182 \, \text{m/s}^2 \][/tex]
### 4. Calculate the direction of the acceleration
Finally, we find the direction (angle) [tex]\(\theta_{\text{acc}}\)[/tex] of the acceleration using the tangent function:
[tex]\[ \theta_{\text{acc}} = \tan^{-2} \left(\frac{a_y}{a_x}\right) = \tan^{-1}\left(\frac{15.182}{-10.252}\right) \][/tex]
This gives us:
[tex]\[ \theta_{\text{acc}} \approx 124.03^\circ \][/tex]
So, the direction of the acceleration of the ball is approximately [tex]\( 124.03^\circ \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.