At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To write the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form, follow these steps:
1. Identify the terms: The given polynomial consists of the following terms:
- [tex]\( 2x^2 \)[/tex]
- [tex]\( x^3 \)[/tex]
- [tex]\(-3\)[/tex]
- [tex]\( 4x^5 \)[/tex]
2. Rewrite the polynomial: Write down the terms explicitly:
- [tex]\( 2x^2 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 2.
- [tex]\( x^3 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 3.
- [tex]\(-3\)[/tex] is a constant term, with no [tex]\( x \)[/tex].
- [tex]\( 4x^5 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 5.
3. Arrange the terms in descending order of their exponents: To place the polynomial in standard form, list the terms from the highest exponent to the lowest:
- The highest exponent term here is [tex]\( 4x^5 \)[/tex], which comes first.
- The next highest exponent is [tex]\( x^3 \)[/tex], which comes second.
- Followed by [tex]\( 2x^2 \)[/tex], which comes third.
- Finally, the constant term [tex]\(-3\)[/tex] comes last.
4. Write the polynomial in standard form:
Combining the terms in descending order of their exponents, we get:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
Therefore, the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form is:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
1. Identify the terms: The given polynomial consists of the following terms:
- [tex]\( 2x^2 \)[/tex]
- [tex]\( x^3 \)[/tex]
- [tex]\(-3\)[/tex]
- [tex]\( 4x^5 \)[/tex]
2. Rewrite the polynomial: Write down the terms explicitly:
- [tex]\( 2x^2 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 2.
- [tex]\( x^3 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 3.
- [tex]\(-3\)[/tex] is a constant term, with no [tex]\( x \)[/tex].
- [tex]\( 4x^5 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 5.
3. Arrange the terms in descending order of their exponents: To place the polynomial in standard form, list the terms from the highest exponent to the lowest:
- The highest exponent term here is [tex]\( 4x^5 \)[/tex], which comes first.
- The next highest exponent is [tex]\( x^3 \)[/tex], which comes second.
- Followed by [tex]\( 2x^2 \)[/tex], which comes third.
- Finally, the constant term [tex]\(-3\)[/tex] comes last.
4. Write the polynomial in standard form:
Combining the terms in descending order of their exponents, we get:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
Therefore, the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form is:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.