Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To sketch two periods of the graph of the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], we'll need to identify its stretching factor, period, and asymptotes.
### Stretching Factor:
The function [tex]\( \tan\left(x - \frac{\pi}{4}\right) \)[/tex] does not have a coefficient that modifies the tangent term directly (in the form of [tex]\( A \cdot \tan(B(x - C)) \)[/tex]). Hence, the stretching factor of the tangent function remains:
[tex]\[ \text{Stretching factor} = 1 \][/tex]
### Period:
The period of the tangent function [tex]\( \tan(x) \)[/tex] is [tex]\( \pi \)[/tex]. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the horizontal shift (in this case, [tex]\(\frac{\pi}{4}\)[/tex]) does not affect the period. Therefore, the period of [tex]\( p(x) \)[/tex] is:
[tex]\[ \text{Period} = \pi \][/tex]
### Asymptotes:
The vertical asymptotes of the standard tangent function occur where the argument of the tangent function is of the form [tex]\( \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is an integer. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the argument will be undefined where:
[tex]\[ x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = \frac{\pi}{4} + \frac{\pi}{2} + k\pi = \frac{\pi}{4} + \left(2k+1\right)\frac{\pi}{2} \][/tex]
By considering [tex]\( k = -1, 0, 1 \)[/tex] (covering two periods around the origin), the asymptotes within the domain [tex]\([-P, P]\)[/tex] where [tex]\( P = \pi \)[/tex] are:
[tex]\[ x = -\frac{\pi}{4}, \quad x = \frac{3\pi}{4}, \quad x = \frac{7\pi}{4} \][/tex]
These intervals are correctly placed within two periods because:
[tex]\[ - \frac{\pi}{4} \][/tex]
is less than [tex]\[((2 - 1)·pi / 2\) = ((1·Pi)/2) \[= \pi\][/tex]
\[
\frac{3\pi}{4}, \space approximately
x = \frac{\pi}{4} + 1*pi/2. roughly and right at
\frac{7\pi}{4}, \ (but not exactly at).
Thus we get the following approximation values noted below as
close intervals within approximately these domains once we correct small fractions into a rounded set.
So, the exact coordinates will be noted as:
### Answers
- Stretching factor [tex]\( = 1 \)[/tex]
- Period: [tex]\( P = \pi \)[/tex]
- Asymptotes: [tex]\( x=-\frac{\pi}{4}; \ x = \frac{3\pi}{4}; x = \frac{7\pi}{4} \)[/tex].
### Stretching Factor:
The function [tex]\( \tan\left(x - \frac{\pi}{4}\right) \)[/tex] does not have a coefficient that modifies the tangent term directly (in the form of [tex]\( A \cdot \tan(B(x - C)) \)[/tex]). Hence, the stretching factor of the tangent function remains:
[tex]\[ \text{Stretching factor} = 1 \][/tex]
### Period:
The period of the tangent function [tex]\( \tan(x) \)[/tex] is [tex]\( \pi \)[/tex]. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the horizontal shift (in this case, [tex]\(\frac{\pi}{4}\)[/tex]) does not affect the period. Therefore, the period of [tex]\( p(x) \)[/tex] is:
[tex]\[ \text{Period} = \pi \][/tex]
### Asymptotes:
The vertical asymptotes of the standard tangent function occur where the argument of the tangent function is of the form [tex]\( \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is an integer. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the argument will be undefined where:
[tex]\[ x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = \frac{\pi}{4} + \frac{\pi}{2} + k\pi = \frac{\pi}{4} + \left(2k+1\right)\frac{\pi}{2} \][/tex]
By considering [tex]\( k = -1, 0, 1 \)[/tex] (covering two periods around the origin), the asymptotes within the domain [tex]\([-P, P]\)[/tex] where [tex]\( P = \pi \)[/tex] are:
[tex]\[ x = -\frac{\pi}{4}, \quad x = \frac{3\pi}{4}, \quad x = \frac{7\pi}{4} \][/tex]
These intervals are correctly placed within two periods because:
[tex]\[ - \frac{\pi}{4} \][/tex]
is less than [tex]\[((2 - 1)·pi / 2\) = ((1·Pi)/2) \[= \pi\][/tex]
\[
\frac{3\pi}{4}, \space approximately
x = \frac{\pi}{4} + 1*pi/2. roughly and right at
\frac{7\pi}{4}, \ (but not exactly at).
Thus we get the following approximation values noted below as
close intervals within approximately these domains once we correct small fractions into a rounded set.
So, the exact coordinates will be noted as:
### Answers
- Stretching factor [tex]\( = 1 \)[/tex]
- Period: [tex]\( P = \pi \)[/tex]
- Asymptotes: [tex]\( x=-\frac{\pi}{4}; \ x = \frac{3\pi}{4}; x = \frac{7\pi}{4} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.