Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which two events are independent, we need to check if the probabilities of their intersections equal the product of their individual probabilities. An event [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent if and only if [tex]\( P(X \cap Y) = P(X) \cdot P(Y) \)[/tex].
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.