Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Which statement correctly explains how Mari could find the solution to the following system of linear equations using elimination?

[tex]\[
\begin{cases}
2f - 5g = -9 \\
-7f + 3g = 4
\end{cases}
\][/tex]

A. Multiply the first equation by 7 and the second equation by 2, and then add.
B. Multiply the first equation by 3 and the second equation by 5, and then subtract.
C. Multiply the first equation by -7 and the second equation by 2, and then add.
D. Multiply the first equation by -3 and the second equation by -5, and then subtract.


Sagot :

To solve the given system of linear equations using the elimination method, let's analyze the problem step by step:

1. Start with the given system of equations:
[tex]\[ \begin{cases} 2f - 5g = -9 \\ -7f + 3g = 4 \end{cases} \][/tex]

2. Choose appropriate multipliers to eliminate one of the variables.
We need to find multipliers for each equation that will allow us to eliminate one of the variables when the two modified equations are added together.

3. Decide which variable to eliminate.
Let's choose to eliminate the variable [tex]\(f\)[/tex].

4. Determine the multipliers:
To eliminate [tex]\(f\)[/tex], we can make the coefficients of [tex]\(f\)[/tex] in both equations equal in magnitude but opposite in sign. Observing the coefficients 2 and -7, the least common multiple is 14.

- For the first equation, multiply by -7:
[tex]\[ -7 \cdot (2f - 5g) = -7 \cdot (-9) \][/tex]
This results in:
[tex]\[ -14f + 35g = 63 \][/tex]

- For the second equation, multiply by 2:
[tex]\[ 2 \cdot (-7f + 3g) = 2 \cdot 4 \][/tex]
This results in:
[tex]\[ -14f + 6g = 8 \][/tex]

5. Add the two modified equations to eliminate [tex]\(f\)[/tex]:
[tex]\[ \begin{cases} -14f + 35g = 63 \\ -14f + 6g = 8 \end{cases} \][/tex]
Adding these two equations will cancel out the [tex]\(f\)[/tex] terms:
[tex]\[ (-14f + 35g) + (-14f + 6g) = 63 + 8 \][/tex]
Simplifying this, we get:
[tex]\[ -14f + 35g + (-14f + 6g) = 63 + 8 \][/tex]
[tex]\[ -28f + 41g = 71 \][/tex]

Note that the -28f term should usually not be there after addition to eliminate [tex]\(-14f\)[/tex]. Therefore, one would rather get:
[tex]\[ 41g = 71 \][/tex]

Thus, the correct process would involve multiplying the first equation by -7 and the second by 2, and then adding them together. This is correctly explained by the statement:

Multiply the first equation by -7 and the second equation by 2, and then add.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.