Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which inequality represents all values of [tex]\( x \)[/tex] for which the product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is defined, we need to consider the conditions under which each square root expression is defined.
1. First Expression: [tex]\(\sqrt{5x}\)[/tex]
A square root [tex]\(\sqrt{5x}\)[/tex] is defined only when the expression inside the square root is non-negative. So, we need:
[tex]\[ 5x \geq 0 \][/tex]
Dividing both sides by 5:
[tex]\[ x \geq 0 \][/tex]
2. Second Expression: [tex]\(\sqrt{x+3}\)[/tex]
Similarly, the square root [tex]\(\sqrt{x+3}\)[/tex] is defined only when the expression inside is non-negative. Thus, we need:
[tex]\[ x+3 \geq 0 \][/tex]
Subtracting 3 from both sides:
[tex]\[ x \geq -3 \][/tex]
3. Combining the Inequalities
The product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is only defined if both individual square roots are defined. Therefore, [tex]\( x \)[/tex] must satisfy both inequalities simultaneously:
[tex]\[ x \geq 0 \quad \text{and} \quad x \geq -3 \][/tex]
The more restrictive condition here is [tex]\( x \geq 0 \)[/tex]. In other words, if [tex]\( x \geq 0 \)[/tex], then it automatically satisfies the [tex]\( x \geq -3 \)[/tex] condition as well.
Therefore, the inequality that represents all values of [tex]\( x \)[/tex] for which the product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is defined is:
[tex]\[ \boxed{x \geq 0} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
1. First Expression: [tex]\(\sqrt{5x}\)[/tex]
A square root [tex]\(\sqrt{5x}\)[/tex] is defined only when the expression inside the square root is non-negative. So, we need:
[tex]\[ 5x \geq 0 \][/tex]
Dividing both sides by 5:
[tex]\[ x \geq 0 \][/tex]
2. Second Expression: [tex]\(\sqrt{x+3}\)[/tex]
Similarly, the square root [tex]\(\sqrt{x+3}\)[/tex] is defined only when the expression inside is non-negative. Thus, we need:
[tex]\[ x+3 \geq 0 \][/tex]
Subtracting 3 from both sides:
[tex]\[ x \geq -3 \][/tex]
3. Combining the Inequalities
The product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is only defined if both individual square roots are defined. Therefore, [tex]\( x \)[/tex] must satisfy both inequalities simultaneously:
[tex]\[ x \geq 0 \quad \text{and} \quad x \geq -3 \][/tex]
The more restrictive condition here is [tex]\( x \geq 0 \)[/tex]. In other words, if [tex]\( x \geq 0 \)[/tex], then it automatically satisfies the [tex]\( x \geq -3 \)[/tex] condition as well.
Therefore, the inequality that represents all values of [tex]\( x \)[/tex] for which the product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is defined is:
[tex]\[ \boxed{x \geq 0} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.