Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex], we will proceed step-by-step. Here's a detailed solution:
1. Identify the integrand and the limits of integration.
The integrand is [tex]\( x^2 \)[/tex] and the limits of integration are from [tex]\( 1 \)[/tex] to [tex]\( 4 \)[/tex].
2. Find the antiderivative of the integrand.
The antiderivative (or indefinite integral) of [tex]\( x^2 \)[/tex] is found by using the power rule for integration. The power rule states that:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
for any real number [tex]\( n \neq -1 \)[/tex].
Applying this rule to [tex]\( x^2 \)[/tex]:
[tex]\[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \][/tex]
3. Evaluate the definite integral using the Fundamental Theorem of Calculus.
The Fundamental Theorem of Calculus states that if [tex]\( F(x) \)[/tex] is an antiderivative of [tex]\( f(x) \)[/tex], then:
[tex]\[ \int_a^b f(x) \, dx = F(b) - F(a) \][/tex]
Here, our [tex]\( F(x) = \frac{x^3}{3} \)[/tex]. We need to evaluate this at the upper and lower limits of integration, [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex], respectively.
[tex]\[ F(4) = \frac{4^3}{3} = \frac{64}{3} \][/tex]
[tex]\[ F(1) = \frac{1^3}{3} = \frac{1}{3} \][/tex]
4. Subtract the value of the antiderivative at the lower limit from the value at the upper limit.
[tex]\[ \int_1^4 x^2 \, dx = F(4) - F(1) = \frac{64}{3} - \frac{1}{3} \][/tex]
5. Simplify the expression.
Combine the fractions:
[tex]\[ \frac{64}{3} - \frac{1}{3} = \frac{64 - 1}{3} = \frac{63}{3} = 21 \][/tex]
Therefore, the value of the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex] is:
[tex]\[ b = 21 \][/tex]
1. Identify the integrand and the limits of integration.
The integrand is [tex]\( x^2 \)[/tex] and the limits of integration are from [tex]\( 1 \)[/tex] to [tex]\( 4 \)[/tex].
2. Find the antiderivative of the integrand.
The antiderivative (or indefinite integral) of [tex]\( x^2 \)[/tex] is found by using the power rule for integration. The power rule states that:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
for any real number [tex]\( n \neq -1 \)[/tex].
Applying this rule to [tex]\( x^2 \)[/tex]:
[tex]\[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \][/tex]
3. Evaluate the definite integral using the Fundamental Theorem of Calculus.
The Fundamental Theorem of Calculus states that if [tex]\( F(x) \)[/tex] is an antiderivative of [tex]\( f(x) \)[/tex], then:
[tex]\[ \int_a^b f(x) \, dx = F(b) - F(a) \][/tex]
Here, our [tex]\( F(x) = \frac{x^3}{3} \)[/tex]. We need to evaluate this at the upper and lower limits of integration, [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex], respectively.
[tex]\[ F(4) = \frac{4^3}{3} = \frac{64}{3} \][/tex]
[tex]\[ F(1) = \frac{1^3}{3} = \frac{1}{3} \][/tex]
4. Subtract the value of the antiderivative at the lower limit from the value at the upper limit.
[tex]\[ \int_1^4 x^2 \, dx = F(4) - F(1) = \frac{64}{3} - \frac{1}{3} \][/tex]
5. Simplify the expression.
Combine the fractions:
[tex]\[ \frac{64}{3} - \frac{1}{3} = \frac{64 - 1}{3} = \frac{63}{3} = 21 \][/tex]
Therefore, the value of the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex] is:
[tex]\[ b = 21 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.