Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's provide a detailed, step-by-step solution to justify Mariah's statement.
Mariah states that the expression [tex]\( 5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9) \)[/tex] is equivalent to [tex]\(-1 \times 3\)[/tex]. Let's see if her statement holds true.
Step-by-Step Solution:
1. Rewrite the expression: Start with the given expression:
[tex]\[ 5 \left( -\frac{1}{3} \right) \left( -\frac{1}{5} \right) (-9) \][/tex]
2. Combine the fractions: We want to simplify step by step. First, consider the product of the fractions:
[tex]\[ -\frac{1}{3} \times -\frac{1}{5} = \frac{1}{15} \][/tex]
3. Incorporate the 5:
[tex]\[ 5 \times \frac{1}{15} = \frac{5}{15} = \frac{1}{3} \][/tex]
So the expression becomes:
[tex]\[ \frac{1}{3} \times (-9) \][/tex]
4. Multiply by -9:
[tex]\[ \frac{1}{3} \times (-9) = -3 \][/tex]
5. Relate this to [tex]\(-1 \times 3\)[/tex]: Notice:
[tex]\[ -3 \text{ is the same as } -1 \times 3 \][/tex]
Now, let's fill in the blanks as per the required format:
Sentence 1:
- You can multiply 5 by [tex]\(\boxed{-\frac{1}{5}}\)[/tex] to get -1.
Why? Because [tex]\(5 \times -\frac{1}{5} = -1\)[/tex].
Sentence 2:
- You can multiply [tex]\(\boxed{-\frac{1}{3}}\)[/tex] by [tex]\(\boxed{-3}\)[/tex] to get 3.
Why? Because [tex]\(-\frac{1}{3} \times -3 = 1\)[/tex]. Since we incorporate the product with 9 in the next step, think of the combined multiplication.
Sentence 3:
- The final product is [tex]\( -1 \times 3 = \boxed{-3} \)[/tex].
Putting it all together, Mariah's statement is correctly justified. The product of [tex]\(5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9)\)[/tex] indeed simplifies to [tex]\(-3\)[/tex], which is equivalent to [tex]\(-1 \times 3\)[/tex].
Mariah states that the expression [tex]\( 5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9) \)[/tex] is equivalent to [tex]\(-1 \times 3\)[/tex]. Let's see if her statement holds true.
Step-by-Step Solution:
1. Rewrite the expression: Start with the given expression:
[tex]\[ 5 \left( -\frac{1}{3} \right) \left( -\frac{1}{5} \right) (-9) \][/tex]
2. Combine the fractions: We want to simplify step by step. First, consider the product of the fractions:
[tex]\[ -\frac{1}{3} \times -\frac{1}{5} = \frac{1}{15} \][/tex]
3. Incorporate the 5:
[tex]\[ 5 \times \frac{1}{15} = \frac{5}{15} = \frac{1}{3} \][/tex]
So the expression becomes:
[tex]\[ \frac{1}{3} \times (-9) \][/tex]
4. Multiply by -9:
[tex]\[ \frac{1}{3} \times (-9) = -3 \][/tex]
5. Relate this to [tex]\(-1 \times 3\)[/tex]: Notice:
[tex]\[ -3 \text{ is the same as } -1 \times 3 \][/tex]
Now, let's fill in the blanks as per the required format:
Sentence 1:
- You can multiply 5 by [tex]\(\boxed{-\frac{1}{5}}\)[/tex] to get -1.
Why? Because [tex]\(5 \times -\frac{1}{5} = -1\)[/tex].
Sentence 2:
- You can multiply [tex]\(\boxed{-\frac{1}{3}}\)[/tex] by [tex]\(\boxed{-3}\)[/tex] to get 3.
Why? Because [tex]\(-\frac{1}{3} \times -3 = 1\)[/tex]. Since we incorporate the product with 9 in the next step, think of the combined multiplication.
Sentence 3:
- The final product is [tex]\( -1 \times 3 = \boxed{-3} \)[/tex].
Putting it all together, Mariah's statement is correctly justified. The product of [tex]\(5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9)\)[/tex] indeed simplifies to [tex]\(-3\)[/tex], which is equivalent to [tex]\(-1 \times 3\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.