Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To simplify the expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] using a double-angle formula, we can follow these steps:
1. Recall the Double-Angle Formula for Sine:
The double-angle formula for sine states that:
[tex]\[ \sin(2a) = 2 \sin(a) \cos(a) \][/tex]
2. Identify the Given Expression:
We are given the expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex].
3. Match the Given Expression to the Double-Angle Formula:
Notice that the given expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] matches the right-hand side of the double-angle formula [tex]\( \sin(2a) = 2 \sin(a) \cos(a) \)[/tex], where [tex]\( a = \frac{\pi}{7} \)[/tex].
4. Simplify Using the Double-Angle Formula:
Based on the formula, we can write:
[tex]\[ 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} = \sin \left( 2 \cdot \frac{\pi}{7} \right) \][/tex]
Simplify the argument of the sine function:
[tex]\[ 2 \cdot \frac{\pi}{7} = \frac{2\pi}{7} \][/tex]
5. Final Simplified Expression:
Therefore, the simplified form of the given expression is:
[tex]\[ \sin \frac{2\pi}{7} \][/tex]
6. Evaluate the Simplified Expression:
When evaluated, the value of [tex]\( \sin \frac{2\pi}{7} \)[/tex] is approximately:
[tex]\[ 0.7818314824680298 \][/tex]
Hence, the simplified expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] equals [tex]\( \sin \frac{2\pi}{7} \)[/tex], and its numerical value is approximately [tex]\( 0.7818314824680298 \)[/tex].
1. Recall the Double-Angle Formula for Sine:
The double-angle formula for sine states that:
[tex]\[ \sin(2a) = 2 \sin(a) \cos(a) \][/tex]
2. Identify the Given Expression:
We are given the expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex].
3. Match the Given Expression to the Double-Angle Formula:
Notice that the given expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] matches the right-hand side of the double-angle formula [tex]\( \sin(2a) = 2 \sin(a) \cos(a) \)[/tex], where [tex]\( a = \frac{\pi}{7} \)[/tex].
4. Simplify Using the Double-Angle Formula:
Based on the formula, we can write:
[tex]\[ 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} = \sin \left( 2 \cdot \frac{\pi}{7} \right) \][/tex]
Simplify the argument of the sine function:
[tex]\[ 2 \cdot \frac{\pi}{7} = \frac{2\pi}{7} \][/tex]
5. Final Simplified Expression:
Therefore, the simplified form of the given expression is:
[tex]\[ \sin \frac{2\pi}{7} \][/tex]
6. Evaluate the Simplified Expression:
When evaluated, the value of [tex]\( \sin \frac{2\pi}{7} \)[/tex] is approximately:
[tex]\[ 0.7818314824680298 \][/tex]
Hence, the simplified expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] equals [tex]\( \sin \frac{2\pi}{7} \)[/tex], and its numerical value is approximately [tex]\( 0.7818314824680298 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.