Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the average atomic mass of element [tex]$X$[/tex], we follow these steps:
1. Convert the abundance percentages to proportions:
- For isotope X-63, the abundance is 69.15%, which as a proportion is [tex]\( \frac{69.15}{100} = 0.6915 \)[/tex].
- For isotope X-65, the abundance is 30.85%, which as a proportion is [tex]\( \frac{30.85}{100} = 0.3085 \)[/tex].
2. Calculate the weighted average atomic mass:
[tex]\[ \text{Average atomic mass} = (\text{Atomic mass of X-63} \times \text{Proportion of X-63}) + (\text{Atomic mass of X-65} \times \text{Proportion of X-65}) \][/tex]
Substituting the values:
[tex]\[ \text{Average atomic mass} = (62.9296 \times 0.6915) + (64.9278 \times 0.3085) \][/tex]
[tex]\[ \text{Average atomic mass} = 43.5196124 + 20.0264323 \][/tex]
[tex]\[ \text{Average atomic mass} = 63.5460447 \][/tex]
3. Round the result to the nearest hundredth:
The unrounded average atomic mass is 63.5460447. When we round this to the nearest hundredth, we get 63.55.
Therefore, the average atomic mass of element [tex]\(X\)[/tex] is [tex]\( \boxed{63.55} \)[/tex] amu.
1. Convert the abundance percentages to proportions:
- For isotope X-63, the abundance is 69.15%, which as a proportion is [tex]\( \frac{69.15}{100} = 0.6915 \)[/tex].
- For isotope X-65, the abundance is 30.85%, which as a proportion is [tex]\( \frac{30.85}{100} = 0.3085 \)[/tex].
2. Calculate the weighted average atomic mass:
[tex]\[ \text{Average atomic mass} = (\text{Atomic mass of X-63} \times \text{Proportion of X-63}) + (\text{Atomic mass of X-65} \times \text{Proportion of X-65}) \][/tex]
Substituting the values:
[tex]\[ \text{Average atomic mass} = (62.9296 \times 0.6915) + (64.9278 \times 0.3085) \][/tex]
[tex]\[ \text{Average atomic mass} = 43.5196124 + 20.0264323 \][/tex]
[tex]\[ \text{Average atomic mass} = 63.5460447 \][/tex]
3. Round the result to the nearest hundredth:
The unrounded average atomic mass is 63.5460447. When we round this to the nearest hundredth, we get 63.55.
Therefore, the average atomic mass of element [tex]\(X\)[/tex] is [tex]\( \boxed{63.55} \)[/tex] amu.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.