Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we will determine two key quantities:
1. The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex].
2. The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis.
### Step 1: Finding the Area Under the Curve
The area [tex]\( A \)[/tex] under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is given by the definite integral of the function with respect to [tex]\( x \)[/tex]:
[tex]\[ A = \int_{0}^{1} \frac{1}{x^4 + 1} \, dx \][/tex]
The result of evaluating this integral numerically is:
[tex]\[ A = 0.8669729873399111 \][/tex]
### Step 2: Finding the Volume of Revolution
To find the volume of the solid formed by revolving the given region around the [tex]\( y \)[/tex]-axis, we use the method of disks. The volume formula, when revolving around the [tex]\( y \)[/tex]-axis, is given by:
[tex]\[ V = 2\pi \int_{x_{\text{lower}}}^{x_{\text{upper}}} x \cdot f(x) \, dx \][/tex]
However, based on the previous calculation, we can also express the volume formula in a more straightforward way. The volume of revolution around the [tex]\( y \)[/tex]-axis for this function is given by multiplying the area under the curve by [tex]\(\pi\)[/tex]:
[tex]\[ V = \pi \times A \][/tex]
Substituting the computed area:
[tex]\[ V = \pi \times 0.8669729873399111 \approx 2.7236759678878615 \][/tex]
### Summary
- The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is approximately [tex]\( 0.8669729873399111 \)[/tex].
- The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis is approximately [tex]\( 2.7236759678878615 \)[/tex].
Thus, the final answers are:
- Area under the curve: [tex]\( 0.8669729873399111 \)[/tex]
- Volume of the solid of revolution: [tex]\( 2.7236759678878615 \)[/tex]
1. The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex].
2. The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis.
### Step 1: Finding the Area Under the Curve
The area [tex]\( A \)[/tex] under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is given by the definite integral of the function with respect to [tex]\( x \)[/tex]:
[tex]\[ A = \int_{0}^{1} \frac{1}{x^4 + 1} \, dx \][/tex]
The result of evaluating this integral numerically is:
[tex]\[ A = 0.8669729873399111 \][/tex]
### Step 2: Finding the Volume of Revolution
To find the volume of the solid formed by revolving the given region around the [tex]\( y \)[/tex]-axis, we use the method of disks. The volume formula, when revolving around the [tex]\( y \)[/tex]-axis, is given by:
[tex]\[ V = 2\pi \int_{x_{\text{lower}}}^{x_{\text{upper}}} x \cdot f(x) \, dx \][/tex]
However, based on the previous calculation, we can also express the volume formula in a more straightforward way. The volume of revolution around the [tex]\( y \)[/tex]-axis for this function is given by multiplying the area under the curve by [tex]\(\pi\)[/tex]:
[tex]\[ V = \pi \times A \][/tex]
Substituting the computed area:
[tex]\[ V = \pi \times 0.8669729873399111 \approx 2.7236759678878615 \][/tex]
### Summary
- The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is approximately [tex]\( 0.8669729873399111 \)[/tex].
- The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis is approximately [tex]\( 2.7236759678878615 \)[/tex].
Thus, the final answers are:
- Area under the curve: [tex]\( 0.8669729873399111 \)[/tex]
- Volume of the solid of revolution: [tex]\( 2.7236759678878615 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.