Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which expression is equivalent to [tex]\( P(z \geq 1.4) \)[/tex], let's analyze each given option step-by-step.
1. Option 1: [tex]\( P(z \leq 1.4) \)[/tex]
- This represents the cumulative probability of the standard normal variable [tex]\( z \)[/tex] being less than or equal to 1.4.
- Mathematically, this is written as [tex]\( P(z \leq 1.4) \)[/tex].
- This is not what we are looking for, since it represents the probability of [tex]\( z \)[/tex] being on the opposite side of the threshold.
2. Option 2: [tex]\( 1 - P(z \leq 1.4) \)[/tex]
- This expression makes use of the fact that the total probability for any standard normal distribution is 1.
- By subtracting [tex]\( P(z \leq 1.4) \)[/tex] from 1, we get the complement, which is [tex]\( P(z > 1.4) \)[/tex].
- For continuous distributions, [tex]\( P(z \geq 1.4) \)[/tex] is the same as [tex]\( P(z > 1.4) \)[/tex], since the probability of [tex]\( z \)[/tex] being exactly 1.4 is 0.
- Thus, [tex]\( 1 - P(z \leq 1.4) \)[/tex] is equivalent to [tex]\( P(z \geq 1.4) \)[/tex].
3. Option 3: [tex]\( P(z \geq -1.4) \)[/tex]
- This represents the probability of the standard normal variable [tex]\( z \)[/tex] being greater than or equal to -1.4.
- Clearly, the threshold here is different ([tex]\(-1.4\)[/tex] instead of [tex]\(1.4\)[/tex]), so this is not equivalent to what we are looking for.
Therefore, the correct option that is equivalent to [tex]\( P(z \geq 1.4) \)[/tex] is:
[tex]\[ \boxed{1 - P(z \leq 1.4)} \][/tex]
This corresponds to Option 2 from the given set.
1. Option 1: [tex]\( P(z \leq 1.4) \)[/tex]
- This represents the cumulative probability of the standard normal variable [tex]\( z \)[/tex] being less than or equal to 1.4.
- Mathematically, this is written as [tex]\( P(z \leq 1.4) \)[/tex].
- This is not what we are looking for, since it represents the probability of [tex]\( z \)[/tex] being on the opposite side of the threshold.
2. Option 2: [tex]\( 1 - P(z \leq 1.4) \)[/tex]
- This expression makes use of the fact that the total probability for any standard normal distribution is 1.
- By subtracting [tex]\( P(z \leq 1.4) \)[/tex] from 1, we get the complement, which is [tex]\( P(z > 1.4) \)[/tex].
- For continuous distributions, [tex]\( P(z \geq 1.4) \)[/tex] is the same as [tex]\( P(z > 1.4) \)[/tex], since the probability of [tex]\( z \)[/tex] being exactly 1.4 is 0.
- Thus, [tex]\( 1 - P(z \leq 1.4) \)[/tex] is equivalent to [tex]\( P(z \geq 1.4) \)[/tex].
3. Option 3: [tex]\( P(z \geq -1.4) \)[/tex]
- This represents the probability of the standard normal variable [tex]\( z \)[/tex] being greater than or equal to -1.4.
- Clearly, the threshold here is different ([tex]\(-1.4\)[/tex] instead of [tex]\(1.4\)[/tex]), so this is not equivalent to what we are looking for.
Therefore, the correct option that is equivalent to [tex]\( P(z \geq 1.4) \)[/tex] is:
[tex]\[ \boxed{1 - P(z \leq 1.4)} \][/tex]
This corresponds to Option 2 from the given set.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.