Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's graph the exponential function [tex]\( g(x) = 4^{x+3} \)[/tex]. We'll plot two points, draw the asymptote, and finally determine the domain and range. Here's a step-by-step solution:
### 1. Understanding the Function
The function [tex]\( g(x) = 4^{x+3} \)[/tex] is an exponential function with a base of 4. The general form of an exponential function is [tex]\( a^{(x+c)} \)[/tex], where [tex]\( a \)[/tex] is the base and [tex]\( c \)[/tex] is a constant.
### 2. Choosing Points to Plot
We can choose two points for visualization:
- Let’s choose [tex]\( x = -2 \)[/tex]
- Let’s choose [tex]\( x = 2 \)[/tex]
#### For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = 4^{(-2+3)} = 4^1 = 4 \][/tex]
#### For [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = 4^{(2+3)} = 4^5 = 1024 \][/tex]
So, the points to plot are [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
### 3. Drawing the Asymptote
The horizontal asymptote of an exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because, as [tex]\( x \)[/tex] approaches negative infinity, the exponential value approaches 0 but never actually reaches it.
### 4. Graphical Representation
#### (Manually or using graphing software, plot the following):
- The point [tex]\((-2, 4)\)[/tex]
- The point [tex]\((2, 1024)\)[/tex]
- Draw a smooth curve passing through these points showing the exponential growth.
- Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
### 5. Domain and Range
#### Domain:
An exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, the domain is:
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]
#### Range:
Since [tex]\( 4^{x+3} \)[/tex] is always positive for any real number [tex]\( x \)[/tex] (it never reaches 0 or goes negative), the range is:
[tex]\[ \text{Range: } (0, \infty) \][/tex]
### Summary of the findings:
- Points: [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex]
- Asymptote: [tex]\( y = 0 \)[/tex]
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\( (0, \infty) \)[/tex]
### Conclusion:
To correctly visualize and describe the function [tex]\( g(x)=4^{x+3} \)[/tex]:
1. Plot the points [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
2. Draw the asymptote at [tex]\( y = 0 \)[/tex].
3. Clearly note that the function grows exponentially from left to right.
Ensure you use graphing tools appropriately if doing this manually or digitally.
### 1. Understanding the Function
The function [tex]\( g(x) = 4^{x+3} \)[/tex] is an exponential function with a base of 4. The general form of an exponential function is [tex]\( a^{(x+c)} \)[/tex], where [tex]\( a \)[/tex] is the base and [tex]\( c \)[/tex] is a constant.
### 2. Choosing Points to Plot
We can choose two points for visualization:
- Let’s choose [tex]\( x = -2 \)[/tex]
- Let’s choose [tex]\( x = 2 \)[/tex]
#### For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = 4^{(-2+3)} = 4^1 = 4 \][/tex]
#### For [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = 4^{(2+3)} = 4^5 = 1024 \][/tex]
So, the points to plot are [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
### 3. Drawing the Asymptote
The horizontal asymptote of an exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because, as [tex]\( x \)[/tex] approaches negative infinity, the exponential value approaches 0 but never actually reaches it.
### 4. Graphical Representation
#### (Manually or using graphing software, plot the following):
- The point [tex]\((-2, 4)\)[/tex]
- The point [tex]\((2, 1024)\)[/tex]
- Draw a smooth curve passing through these points showing the exponential growth.
- Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
### 5. Domain and Range
#### Domain:
An exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, the domain is:
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]
#### Range:
Since [tex]\( 4^{x+3} \)[/tex] is always positive for any real number [tex]\( x \)[/tex] (it never reaches 0 or goes negative), the range is:
[tex]\[ \text{Range: } (0, \infty) \][/tex]
### Summary of the findings:
- Points: [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex]
- Asymptote: [tex]\( y = 0 \)[/tex]
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\( (0, \infty) \)[/tex]
### Conclusion:
To correctly visualize and describe the function [tex]\( g(x)=4^{x+3} \)[/tex]:
1. Plot the points [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
2. Draw the asymptote at [tex]\( y = 0 \)[/tex].
3. Clearly note that the function grows exponentially from left to right.
Ensure you use graphing tools appropriately if doing this manually or digitally.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.