Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which of the given expressions are like radicals, we need to simplify them and compare their radicands (the expressions under the square root) and any coefficients outside the roots.
Let's simplify each given expression step by step:
1. Expression: [tex]\(3 x \sqrt{x^2 y}\)[/tex]
Simplification:
[tex]\[ 3 x \sqrt{x^2 y} = 3 x \cdot \sqrt{x^2 y} = 3 x \cdot x \sqrt{y} = 3 x^2 \sqrt{y} \][/tex]
2. Expression: [tex]\(-12 x \sqrt{x^2 y}\)[/tex]
Simplification:
[tex]\[ -12 x \sqrt{x^2 y} = -12 x \cdot \sqrt{x^2 y} = -12 x \cdot x \sqrt{y} = -12 x^2 \sqrt{y} \][/tex]
3. Expression: [tex]\(-2 x \sqrt{x y^2}\)[/tex]
Simplification:
[tex]\[ -2 x \sqrt{x y^2} = -2 x \cdot \sqrt{x y^2} = -2 x \cdot y \sqrt{x} = -2 x y \sqrt{y} \][/tex]
4. Expression: [tex]\(x \sqrt{y x^2}\)[/tex]
Simplification:
[tex]\[ x \sqrt{y x^2} = x \cdot \sqrt{y x^2} = x \cdot x \sqrt{y} = x^2 \sqrt{y} \][/tex]
5. Expression: [tex]\(-x \sqrt{x^2 y^2}\)[/tex]
Simplification:
[tex]\[ -x \sqrt{x^2 y^2} = -x \cdot \sqrt{x^2 y^2} = -x \cdot x y = -x^2 y \][/tex]
6. Expression: [tex]\(2 \sqrt{x^2 y}\)[/tex]
Simplification:
[tex]\[ 2 \sqrt{x^2 y} = 2 \cdot \sqrt{x^2 y} = 2 x \sqrt{y} \][/tex]
Now, let's compare the simplified forms to see which expressions share the same radicand values and coefficients:
1. [tex]\(3 x^2 \sqrt{y}\)[/tex]
2. [tex]\(-12 x^2 \sqrt{y}\)[/tex]
4. [tex]\(x^2 \sqrt{y}\)[/tex]
We can see that expressions 1, 2, and 4 are like radicals because they have the same [tex]\(x^2 \sqrt{y}\)[/tex] term.
Expression 6 simplifies to [tex]\(2 x \sqrt{y}\)[/tex], which matches in general form but has a different coefficient and thus does not fit perfectly.
Hence, the pairs of like radicals are:
- [tex]\(3 x \sqrt{x^2 y}\)[/tex]
- [tex]\(-12 x \sqrt{x^2 y}\)[/tex]
- [tex]\(x \sqrt{y x^2}\)[/tex]
Therefore, checkboxes 1, 2, and 4 should be selected as the like radicals.
Let's simplify each given expression step by step:
1. Expression: [tex]\(3 x \sqrt{x^2 y}\)[/tex]
Simplification:
[tex]\[ 3 x \sqrt{x^2 y} = 3 x \cdot \sqrt{x^2 y} = 3 x \cdot x \sqrt{y} = 3 x^2 \sqrt{y} \][/tex]
2. Expression: [tex]\(-12 x \sqrt{x^2 y}\)[/tex]
Simplification:
[tex]\[ -12 x \sqrt{x^2 y} = -12 x \cdot \sqrt{x^2 y} = -12 x \cdot x \sqrt{y} = -12 x^2 \sqrt{y} \][/tex]
3. Expression: [tex]\(-2 x \sqrt{x y^2}\)[/tex]
Simplification:
[tex]\[ -2 x \sqrt{x y^2} = -2 x \cdot \sqrt{x y^2} = -2 x \cdot y \sqrt{x} = -2 x y \sqrt{y} \][/tex]
4. Expression: [tex]\(x \sqrt{y x^2}\)[/tex]
Simplification:
[tex]\[ x \sqrt{y x^2} = x \cdot \sqrt{y x^2} = x \cdot x \sqrt{y} = x^2 \sqrt{y} \][/tex]
5. Expression: [tex]\(-x \sqrt{x^2 y^2}\)[/tex]
Simplification:
[tex]\[ -x \sqrt{x^2 y^2} = -x \cdot \sqrt{x^2 y^2} = -x \cdot x y = -x^2 y \][/tex]
6. Expression: [tex]\(2 \sqrt{x^2 y}\)[/tex]
Simplification:
[tex]\[ 2 \sqrt{x^2 y} = 2 \cdot \sqrt{x^2 y} = 2 x \sqrt{y} \][/tex]
Now, let's compare the simplified forms to see which expressions share the same radicand values and coefficients:
1. [tex]\(3 x^2 \sqrt{y}\)[/tex]
2. [tex]\(-12 x^2 \sqrt{y}\)[/tex]
4. [tex]\(x^2 \sqrt{y}\)[/tex]
We can see that expressions 1, 2, and 4 are like radicals because they have the same [tex]\(x^2 \sqrt{y}\)[/tex] term.
Expression 6 simplifies to [tex]\(2 x \sqrt{y}\)[/tex], which matches in general form but has a different coefficient and thus does not fit perfectly.
Hence, the pairs of like radicals are:
- [tex]\(3 x \sqrt{x^2 y}\)[/tex]
- [tex]\(-12 x \sqrt{x^2 y}\)[/tex]
- [tex]\(x \sqrt{y x^2}\)[/tex]
Therefore, checkboxes 1, 2, and 4 should be selected as the like radicals.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.