Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve this step-by-step.
We know from the problem statement that:
- Each man has a mass ([tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex]) of [tex]\( 90 \, kg \)[/tex].
- The gravitational force ([tex]\( F \)[/tex]) between them is [tex]\( 8.64 \times 10^{-8} \, N \)[/tex].
- The gravitational constant ([tex]\( G \)[/tex]) is [tex]\( 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \)[/tex].
We want to find the distance ([tex]\( r \)[/tex]) between the two men. The formula for gravitational force is:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Solving for [tex]\(\ r \)[/tex]:
[tex]\[ r^2 = G \cdot \frac{m_1 \cdot m_2}{F} \][/tex]
First, let's compute the value of [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot m_1 \cdot m_2}{F} \][/tex]
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \cdot 90 \, kg \cdot 90 \, kg}{8.64 \times 10^{-8} \, N} \][/tex]
Given that:
[tex]\[ G = 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \][/tex]
[tex]\[ m_1 = 90 \, kg \][/tex]
[tex]\[ m_2 = 90 \, kg \][/tex]
[tex]\[ F = 8.64 \times 10^{-8} \, N \][/tex]
Plugging in these values:
[tex]\[ r^2 = \frac{(6.67 \times 10^{-11}) \cdot 90 \cdot 90}{8.64 \times 10^{-8}} \][/tex]
[tex]\[ r^2 \approx 6.253125 \][/tex]
Next, we need to find the square root of [tex]\(\ r^2 \)[/tex] to get [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{6.253125} \][/tex]
[tex]\[ r \approx 2.5006 \, m\][/tex]
Therefore, the distance between the two men is approximately [tex]\(2.5\, m\)[/tex].
So, the correct answer is:
C. [tex]\(2.5\, m\)[/tex]
We know from the problem statement that:
- Each man has a mass ([tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex]) of [tex]\( 90 \, kg \)[/tex].
- The gravitational force ([tex]\( F \)[/tex]) between them is [tex]\( 8.64 \times 10^{-8} \, N \)[/tex].
- The gravitational constant ([tex]\( G \)[/tex]) is [tex]\( 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \)[/tex].
We want to find the distance ([tex]\( r \)[/tex]) between the two men. The formula for gravitational force is:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Solving for [tex]\(\ r \)[/tex]:
[tex]\[ r^2 = G \cdot \frac{m_1 \cdot m_2}{F} \][/tex]
First, let's compute the value of [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot m_1 \cdot m_2}{F} \][/tex]
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \cdot 90 \, kg \cdot 90 \, kg}{8.64 \times 10^{-8} \, N} \][/tex]
Given that:
[tex]\[ G = 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \][/tex]
[tex]\[ m_1 = 90 \, kg \][/tex]
[tex]\[ m_2 = 90 \, kg \][/tex]
[tex]\[ F = 8.64 \times 10^{-8} \, N \][/tex]
Plugging in these values:
[tex]\[ r^2 = \frac{(6.67 \times 10^{-11}) \cdot 90 \cdot 90}{8.64 \times 10^{-8}} \][/tex]
[tex]\[ r^2 \approx 6.253125 \][/tex]
Next, we need to find the square root of [tex]\(\ r^2 \)[/tex] to get [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{6.253125} \][/tex]
[tex]\[ r \approx 2.5006 \, m\][/tex]
Therefore, the distance between the two men is approximately [tex]\(2.5\, m\)[/tex].
So, the correct answer is:
C. [tex]\(2.5\, m\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.