Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether an equation can be used to show that Vladas' hypothesis is incorrect, we need to check if any of the given equations represents a function of [tex]\( x \)[/tex]. A function of [tex]\( x \)[/tex] means for every value of [tex]\( x \)[/tex], there should be exactly one value of [tex]\( y \)[/tex].
Let's go through each equation step by step:
1. Equation: [tex]\( x + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x \][/tex]
[tex]\[ y = \pm \sqrt{25 - x} \][/tex]
For a given [tex]\( x \)[/tex], [tex]\( y \)[/tex] can be either [tex]\( \sqrt{25 - x} \)[/tex] or [tex]\( -\sqrt{25 - x} \)[/tex]. This implies that for each [tex]\( x \)[/tex] there are two possible values of [tex]\( y \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
2. Equation: [tex]\( x^2 - y = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y = x^2 - 25 \][/tex]
For any given [tex]\( x \)[/tex], there is exactly one corresponding value of [tex]\( y \)[/tex], which is [tex]\( x^2 - 25 \)[/tex]. Therefore, this equation is indeed a function because it satisfies the condition of providing exactly one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
3. Equation: [tex]\( x^2 + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x^2 \][/tex]
[tex]\[ y = \pm \sqrt{25 - x^2} \][/tex]
For any given [tex]\( x \)[/tex] within [tex]\( -5 \leq x \leq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{25 - x^2} \)[/tex] and [tex]\( -\sqrt{25 - x^2} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it can provide more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
4. Equation: [tex]\( x^2 - y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = x^2 - 25 \][/tex]
[tex]\[ y = \pm \sqrt{x^2 - 25} \][/tex]
For [tex]\( |x| \geq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{x^2 - 25} \)[/tex] and [tex]\( -\sqrt{x^2 - 25} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
From the above examination, we observe that only the equation [tex]\( x^2 - y = 25 \)[/tex] (i.e., the second equation) is a function of [tex]\( x \)[/tex]. This disproves Vladas' hypothesis that an equation with a squared term can never be a function of [tex]\( x \)[/tex].
Therefore, the equation [tex]\( x^2 - y = 25 \)[/tex] can be used to show Vladas that his hypothesis is incorrect.
Let's go through each equation step by step:
1. Equation: [tex]\( x + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x \][/tex]
[tex]\[ y = \pm \sqrt{25 - x} \][/tex]
For a given [tex]\( x \)[/tex], [tex]\( y \)[/tex] can be either [tex]\( \sqrt{25 - x} \)[/tex] or [tex]\( -\sqrt{25 - x} \)[/tex]. This implies that for each [tex]\( x \)[/tex] there are two possible values of [tex]\( y \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
2. Equation: [tex]\( x^2 - y = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y = x^2 - 25 \][/tex]
For any given [tex]\( x \)[/tex], there is exactly one corresponding value of [tex]\( y \)[/tex], which is [tex]\( x^2 - 25 \)[/tex]. Therefore, this equation is indeed a function because it satisfies the condition of providing exactly one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
3. Equation: [tex]\( x^2 + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x^2 \][/tex]
[tex]\[ y = \pm \sqrt{25 - x^2} \][/tex]
For any given [tex]\( x \)[/tex] within [tex]\( -5 \leq x \leq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{25 - x^2} \)[/tex] and [tex]\( -\sqrt{25 - x^2} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it can provide more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
4. Equation: [tex]\( x^2 - y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = x^2 - 25 \][/tex]
[tex]\[ y = \pm \sqrt{x^2 - 25} \][/tex]
For [tex]\( |x| \geq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{x^2 - 25} \)[/tex] and [tex]\( -\sqrt{x^2 - 25} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
From the above examination, we observe that only the equation [tex]\( x^2 - y = 25 \)[/tex] (i.e., the second equation) is a function of [tex]\( x \)[/tex]. This disproves Vladas' hypothesis that an equation with a squared term can never be a function of [tex]\( x \)[/tex].
Therefore, the equation [tex]\( x^2 - y = 25 \)[/tex] can be used to show Vladas that his hypothesis is incorrect.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.