At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To factor the function [tex]\( f(x) = x^2 + 11x + 30 \)[/tex] and convert it to intercept form, follow these steps:
1. Identify the polynomial: We are given [tex]\( f(x) = x^2 + 11x + 30 \)[/tex].
2. Look for factor pairs of the constant term: In this polynomial, the constant term is 30. We need to find two numbers that multiply to 30 and add up to the coefficient of the [tex]\( x \)[/tex] term, which is 11.
3. Find the correct pair:
- The pairs of factors of 30 are:
[tex]\[ (1, 30), (2, 15), (3, 10), (5, 6) \][/tex]
- We seek pairs that add up to 11. The pair (5, 6) satisfies this condition because [tex]\( 5 + 6 = 11 \)[/tex].
4. Rewrite the middle term using the factor pair:
[tex]\[ x^2 + 11x + 30 = x^2 + 5x + 6x + 30 \][/tex]
5. Group the terms:
[tex]\[ x^2 + 5x + 6x + 30 = (x^2 + 5x) + (6x + 30) \][/tex]
6. Factor by grouping:
[tex]\[ (x^2 + 5x) + (6x + 30) = x(x + 5) + 6(x + 5) \][/tex]
7. Factor out the common binomial:
[tex]\[ x(x + 5) + 6(x + 5) = (x + 5)(x + 6) \][/tex]
So, the function [tex]\( f(x) \)[/tex] factored in intercept form is:
[tex]\[ f(x) = (x + 5)(x + 6) \][/tex]
1. Identify the polynomial: We are given [tex]\( f(x) = x^2 + 11x + 30 \)[/tex].
2. Look for factor pairs of the constant term: In this polynomial, the constant term is 30. We need to find two numbers that multiply to 30 and add up to the coefficient of the [tex]\( x \)[/tex] term, which is 11.
3. Find the correct pair:
- The pairs of factors of 30 are:
[tex]\[ (1, 30), (2, 15), (3, 10), (5, 6) \][/tex]
- We seek pairs that add up to 11. The pair (5, 6) satisfies this condition because [tex]\( 5 + 6 = 11 \)[/tex].
4. Rewrite the middle term using the factor pair:
[tex]\[ x^2 + 11x + 30 = x^2 + 5x + 6x + 30 \][/tex]
5. Group the terms:
[tex]\[ x^2 + 5x + 6x + 30 = (x^2 + 5x) + (6x + 30) \][/tex]
6. Factor by grouping:
[tex]\[ (x^2 + 5x) + (6x + 30) = x(x + 5) + 6(x + 5) \][/tex]
7. Factor out the common binomial:
[tex]\[ x(x + 5) + 6(x + 5) = (x + 5)(x + 6) \][/tex]
So, the function [tex]\( f(x) \)[/tex] factored in intercept form is:
[tex]\[ f(x) = (x + 5)(x + 6) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.