Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which table represents an exponential function of the form [tex]\( y = b^x \)[/tex] with [tex]\( 0 < b < 1 \)[/tex], let's analyze each table carefully.
### First Table Analysis:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & \frac{1}{27} \\ \hline -2 & \frac{1}{9} \\ \hline -2 & \frac{1}{3} \\ \hline 0 & 1 \\ \hline 1 & 3 \\ \hline 2 & 9 \\ \hline 3 & 27 \\ \hline \end{array} \][/tex]
- For [tex]\( x = -3 \)[/tex] to [tex]\( x = -2 \)[/tex]: [tex]\( \frac{1/9}{1/27} = 3 \)[/tex]
- For [tex]\( x = -2 \)[/tex] to [tex]\( x = 0 \)[/tex]: [tex]\( \frac{1}{1/9} = 9 \)[/tex]
- For [tex]\( x = 0 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( \frac{9}{1} = 9 \)[/tex]
- For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( \frac{27}{9} = 3 \)[/tex]
We can see that the values don't maintain a consistent ratio, suggesting it is not an exponential function of the desired form.
### Second Table Analysis:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 27 \\ \hline -2 & 9 \\ \hline -1 & 3 \\ \hline 0 & 1 \\ \hline 1 & \frac{1}{3} \\ \hline 2 & \frac{1}{9} \\ \hline 3 & \frac{1}{27} \\ \hline \end{array} \][/tex]
- For [tex]\( x = -3 \)[/tex] to [tex]\( x = -2 \)[/tex]: [tex]\( \frac{9}{27} = \frac{1}{3} \)[/tex]
- For [tex]\( x = -2 \)[/tex] to [tex]\( x = -1 \)[/tex]: [tex]\( \frac{3}{9} = \frac{1}{3} \)[/tex]
- For [tex]\( x = -1 \)[/tex] to [tex]\( x = 0 \)[/tex]: [tex]\( \frac{1}{3} = \frac{1}{3} \)[/tex]
- For [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( \frac{1/3}{1} = \frac{1}{3} \)[/tex]
- For [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( \frac{1/9}{1/3} = \frac{1}{3} \)[/tex]
- For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( \frac{1/27}{1/9} = \frac{1}{3} \)[/tex]
Each ratio [tex]\( \frac{y_{n+1}}{y_{n}} \)[/tex] is [tex]\( \frac{1}{3} \)[/tex], which is consistent and within the range [tex]\( 0 < b < 1 \)[/tex].
Therefore, the second table represents an exponential function of the form [tex]\( y = b^x \)[/tex] with [tex]\( 0 < b < 1 \)[/tex].
The table number is [tex]\( \boxed{2} \)[/tex].
### First Table Analysis:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & \frac{1}{27} \\ \hline -2 & \frac{1}{9} \\ \hline -2 & \frac{1}{3} \\ \hline 0 & 1 \\ \hline 1 & 3 \\ \hline 2 & 9 \\ \hline 3 & 27 \\ \hline \end{array} \][/tex]
- For [tex]\( x = -3 \)[/tex] to [tex]\( x = -2 \)[/tex]: [tex]\( \frac{1/9}{1/27} = 3 \)[/tex]
- For [tex]\( x = -2 \)[/tex] to [tex]\( x = 0 \)[/tex]: [tex]\( \frac{1}{1/9} = 9 \)[/tex]
- For [tex]\( x = 0 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( \frac{9}{1} = 9 \)[/tex]
- For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( \frac{27}{9} = 3 \)[/tex]
We can see that the values don't maintain a consistent ratio, suggesting it is not an exponential function of the desired form.
### Second Table Analysis:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 27 \\ \hline -2 & 9 \\ \hline -1 & 3 \\ \hline 0 & 1 \\ \hline 1 & \frac{1}{3} \\ \hline 2 & \frac{1}{9} \\ \hline 3 & \frac{1}{27} \\ \hline \end{array} \][/tex]
- For [tex]\( x = -3 \)[/tex] to [tex]\( x = -2 \)[/tex]: [tex]\( \frac{9}{27} = \frac{1}{3} \)[/tex]
- For [tex]\( x = -2 \)[/tex] to [tex]\( x = -1 \)[/tex]: [tex]\( \frac{3}{9} = \frac{1}{3} \)[/tex]
- For [tex]\( x = -1 \)[/tex] to [tex]\( x = 0 \)[/tex]: [tex]\( \frac{1}{3} = \frac{1}{3} \)[/tex]
- For [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( \frac{1/3}{1} = \frac{1}{3} \)[/tex]
- For [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( \frac{1/9}{1/3} = \frac{1}{3} \)[/tex]
- For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( \frac{1/27}{1/9} = \frac{1}{3} \)[/tex]
Each ratio [tex]\( \frac{y_{n+1}}{y_{n}} \)[/tex] is [tex]\( \frac{1}{3} \)[/tex], which is consistent and within the range [tex]\( 0 < b < 1 \)[/tex].
Therefore, the second table represents an exponential function of the form [tex]\( y = b^x \)[/tex] with [tex]\( 0 < b < 1 \)[/tex].
The table number is [tex]\( \boxed{2} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.