Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the given problem step-by-step using Charles's Law. Charles's Law states that for a fixed amount of gas at a constant pressure, the volume of the gas is directly proportional to its absolute temperature. The formula is:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Where:
- [tex]\( V_1 \)[/tex] is the initial volume of the gas.
- [tex]\( T_1 \)[/tex] is the initial absolute temperature in Kelvin.
- [tex]\( V_2 \)[/tex] is the final volume of the gas.
- [tex]\( T_2 \)[/tex] is the final absolute temperature in Kelvin.
Given:
- [tex]\( V_1 = 1.0 \, \text{L} \)[/tex]
- [tex]\( T_1 = 22^{\circ} \text{C} \)[/tex]
- [tex]\( T_2 = 52^{\circ} \text{C} \)[/tex]
We need to find [tex]\( V_2 \)[/tex], the final volume of the tire.
First, we need to convert the temperatures from Celsius to Kelvin. The conversion formula is:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So, the initial temperature [tex]\( T_1 \)[/tex] in Kelvin is:
[tex]\[ T_1 = 22 + 273.15 = 295.15 \, \text{K} \][/tex]
And the final temperature [tex]\( T_2 \)[/tex] in Kelvin is:
[tex]\[ T_2 = 52 + 273.15 = 325.15 \, \text{K} \][/tex]
Now, apply Charles's Law to find the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substitute the known values:
[tex]\[ V_2 = 1.0 \, \text{L} \times \frac{325.15 \, \text{K}}{295.15 \, \text{K}} \][/tex]
Calculating the value:
[tex]\[ V_2 \approx 1.0 \times 1.1016432322547858 = 1.1016432322547858 \, \text{L} \][/tex]
Considering the significant figures, we notice that all the initial values [tex]\(1.0 \, \text{L}\)[/tex], [tex]\(22^{\circ} \text{C}\)[/tex], and [tex]\(52^{\circ} \text{C}\)[/tex] are given to two significant figures. Therefore, our final result should be rounded to two significant figures as well.
Thus, the final volume [tex]\( V_2 \)[/tex] of the tire, rounded to two significant figures, is:
[tex]\[ V_2 \approx 1.1 \, \text{L} \][/tex]
So, the resulting volume of the tire is [tex]\( \boxed{1.1} \, \text{L} \)[/tex] when the temperature is increased to [tex]\( 52^{\circ} \text{C} \)[/tex].
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Where:
- [tex]\( V_1 \)[/tex] is the initial volume of the gas.
- [tex]\( T_1 \)[/tex] is the initial absolute temperature in Kelvin.
- [tex]\( V_2 \)[/tex] is the final volume of the gas.
- [tex]\( T_2 \)[/tex] is the final absolute temperature in Kelvin.
Given:
- [tex]\( V_1 = 1.0 \, \text{L} \)[/tex]
- [tex]\( T_1 = 22^{\circ} \text{C} \)[/tex]
- [tex]\( T_2 = 52^{\circ} \text{C} \)[/tex]
We need to find [tex]\( V_2 \)[/tex], the final volume of the tire.
First, we need to convert the temperatures from Celsius to Kelvin. The conversion formula is:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So, the initial temperature [tex]\( T_1 \)[/tex] in Kelvin is:
[tex]\[ T_1 = 22 + 273.15 = 295.15 \, \text{K} \][/tex]
And the final temperature [tex]\( T_2 \)[/tex] in Kelvin is:
[tex]\[ T_2 = 52 + 273.15 = 325.15 \, \text{K} \][/tex]
Now, apply Charles's Law to find the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substitute the known values:
[tex]\[ V_2 = 1.0 \, \text{L} \times \frac{325.15 \, \text{K}}{295.15 \, \text{K}} \][/tex]
Calculating the value:
[tex]\[ V_2 \approx 1.0 \times 1.1016432322547858 = 1.1016432322547858 \, \text{L} \][/tex]
Considering the significant figures, we notice that all the initial values [tex]\(1.0 \, \text{L}\)[/tex], [tex]\(22^{\circ} \text{C}\)[/tex], and [tex]\(52^{\circ} \text{C}\)[/tex] are given to two significant figures. Therefore, our final result should be rounded to two significant figures as well.
Thus, the final volume [tex]\( V_2 \)[/tex] of the tire, rounded to two significant figures, is:
[tex]\[ V_2 \approx 1.1 \, \text{L} \][/tex]
So, the resulting volume of the tire is [tex]\( \boxed{1.1} \, \text{L} \)[/tex] when the temperature is increased to [tex]\( 52^{\circ} \text{C} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.