Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\( A \)[/tex] in the given table, we need to understand what [tex]\( A \)[/tex] represents. The table can be interpreted as a multiplication table where each cell is the product of the binomials from the headers of the respective rows and columns.
The headers for the first row and first column are:
- The values for the first row headers are [tex]\(3x\)[/tex] and [tex]\(5\)[/tex].
- The values for the first column headers are [tex]\(-x\)[/tex] and [tex]\(2\)[/tex].
To find [tex]\( A \)[/tex], we need to multiply the elements in the header row ([tex]\(3x\)[/tex]) and the header column ([tex]\(-x\)[/tex]) that correspond to the position of [tex]\( A \)[/tex]:
The element at this position had headers [tex]\( 3x \)[/tex] horizontally and [tex]\(-x\)[/tex] vertically.
So,
[tex]\[ A = 3x \times (-x) \][/tex]
Now, let's calculate this product step-by-step:
1. Multiply the coefficients [tex]\(3\)[/tex] and [tex]\(-1\)[/tex]:
[tex]\[ 3 \times (-1) = -3 \][/tex]
2. Multiply the variable parts [tex]\(x\)[/tex] and [tex]\(x\)[/tex]:
[tex]\[ x \times x = x^2 \][/tex]
Combining these results, we get:
[tex]\[ A = -3 \times x^2 = -3x^2 \][/tex]
Therefore, the value of [tex]\( A \)[/tex] is:
[tex]\[ -3x^2 \][/tex]
So, the correct answer is [tex]\(\boxed{-3x^2}\)[/tex].
The headers for the first row and first column are:
- The values for the first row headers are [tex]\(3x\)[/tex] and [tex]\(5\)[/tex].
- The values for the first column headers are [tex]\(-x\)[/tex] and [tex]\(2\)[/tex].
To find [tex]\( A \)[/tex], we need to multiply the elements in the header row ([tex]\(3x\)[/tex]) and the header column ([tex]\(-x\)[/tex]) that correspond to the position of [tex]\( A \)[/tex]:
The element at this position had headers [tex]\( 3x \)[/tex] horizontally and [tex]\(-x\)[/tex] vertically.
So,
[tex]\[ A = 3x \times (-x) \][/tex]
Now, let's calculate this product step-by-step:
1. Multiply the coefficients [tex]\(3\)[/tex] and [tex]\(-1\)[/tex]:
[tex]\[ 3 \times (-1) = -3 \][/tex]
2. Multiply the variable parts [tex]\(x\)[/tex] and [tex]\(x\)[/tex]:
[tex]\[ x \times x = x^2 \][/tex]
Combining these results, we get:
[tex]\[ A = -3 \times x^2 = -3x^2 \][/tex]
Therefore, the value of [tex]\( A \)[/tex] is:
[tex]\[ -3x^2 \][/tex]
So, the correct answer is [tex]\(\boxed{-3x^2}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.