Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the distance between the [tex]$2 \, \text{kg}$[/tex] laptop and the [tex]$4 \, \text{kg}$[/tex] jar of pennies, given the gravitational force of [tex]$3.42 \times 10^{-10} \, \text{N}$[/tex], we can use the formula for gravitational force:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\( (6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 3.42 \times 10^{-10} \, \text{N} \)[/tex],
- [tex]\( m_1 = 2 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 4 \, \text{kg} \)[/tex].
First, we rearrange the gravitational force formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Next, substitute the known values into the equation:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{(2 \, \text{kg}) (4 \, \text{kg})}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Simplify the expression inside the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{8 \, \text{kg}^2}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Calculate the numerical result of the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11}\right) \frac{8}{3.42 \times 10^{-10}} \][/tex]
[tex]\[ r^2 \approx 1.561239766081871 \, \text{m}^2 \][/tex]
Now, take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{1.561239766081871} \, \text{m} \][/tex]
[tex]\[ r \approx 1.2494958047476075 \, \text{m} \][/tex]
Rounding to two decimal places, the distance [tex]\( r \)[/tex] is approximately [tex]\( 1.25 \, \text{m} \)[/tex].
Therefore, the correct answer is:
A. [tex]\(\boxed{1.25 \, \text{m}}\)[/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\( (6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 3.42 \times 10^{-10} \, \text{N} \)[/tex],
- [tex]\( m_1 = 2 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 4 \, \text{kg} \)[/tex].
First, we rearrange the gravitational force formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Next, substitute the known values into the equation:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{(2 \, \text{kg}) (4 \, \text{kg})}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Simplify the expression inside the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{8 \, \text{kg}^2}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Calculate the numerical result of the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11}\right) \frac{8}{3.42 \times 10^{-10}} \][/tex]
[tex]\[ r^2 \approx 1.561239766081871 \, \text{m}^2 \][/tex]
Now, take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{1.561239766081871} \, \text{m} \][/tex]
[tex]\[ r \approx 1.2494958047476075 \, \text{m} \][/tex]
Rounding to two decimal places, the distance [tex]\( r \)[/tex] is approximately [tex]\( 1.25 \, \text{m} \)[/tex].
Therefore, the correct answer is:
A. [tex]\(\boxed{1.25 \, \text{m}}\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.