Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

How many solutions does the equation have?

3x + 7 + 2x = 5x + 7


Sagot :

To determine how many solutions the given equation
[tex]\[ 3x + 7 + 2x = 5x + 7 \][/tex]
has, let's proceed with the following steps:

1. Combine like terms on the left-hand side of the equation. Notice that [tex]\(3x\)[/tex] and [tex]\(2x\)[/tex] are like terms:
[tex]\[ 3x + 2x + 7 = 5x + 7 \][/tex]
Adding [tex]\(3x\)[/tex] and [tex]\(2x\)[/tex] gives:
[tex]\[ 5x + 7 = 5x + 7 \][/tex]

2. Simplify the equation by subtracting [tex]\(5x\)[/tex] from both sides:
[tex]\[ 5x + 7 - 5x = 5x + 7 - 5x \][/tex]
This simplifies to:
[tex]\[ 7 = 7 \][/tex]

3. This result is an identity. An identity means that both sides of the equation are equal for all values of [tex]\(x\)[/tex]. In this particular case, the equation does not depend on [tex]\(x\)[/tex] anymore and is just a true statement (7 equals 7).

Because the simplified equation is always true regardless of the value of [tex]\(x\)[/tex], it implies that there are infinitely many solutions to the original equation.

To summarize:
- The original equation simplifies to an identity [tex]\(7 = 7\)[/tex].
- This means that the equation holds true for any value of [tex]\(x\)[/tex].

Hence, there are infinitely many solutions.