Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine how many moles of potassium (K) are needed to react completely with 12.8 moles of magnesium bromide (MgBr[tex]\(_2\)[/tex]) according to the balanced chemical equation, let’s follow these steps:
1. Write down the balanced chemical equation:
[tex]\[ 2 K + MgBr_2 \rightarrow Mg + 2 KBr \][/tex]
2. Identify the mole ratio of potassium (K) to magnesium bromide (MgBr[tex]\(_2\)[/tex]) from the balanced equation. According to the equation:
[tex]\[ 2 \text{ moles of } K \text{ react with } 1 \text{ mole of } MgBr_2 \][/tex]
3. We are given that we have 12.8 moles of MgBr[tex]\(_2\)[/tex]. Using the mole ratio from the balanced equation, we need to calculate how many moles of K are required to react with 12.8 moles of MgBr[tex]\(_2\)[/tex].
4. Multiply the number of moles of MgBr[tex]\(_2\)[/tex] by the mole ratio of K to MgBr[tex]\(_2\)[/tex]:
[tex]\[ \text{moles of } K \text{ needed} = 12.8 \text{ moles of } MgBr_2 \times \left(\frac{2 \text{ moles of } K}{1 \text{ mole of } MgBr_2}\right) \][/tex]
5. Perform the multiplication:
[tex]\[ \text{moles of } K \text{ needed} = 12.8 \times 2 = 25.6 \text{ moles of } K \][/tex]
So, the number of moles of potassium required to react completely with 12.8 moles of magnesium bromide is [tex]\(25.6\)[/tex] moles of [tex]\(K\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{25.6 \text{ moles of } K} \][/tex]
1. Write down the balanced chemical equation:
[tex]\[ 2 K + MgBr_2 \rightarrow Mg + 2 KBr \][/tex]
2. Identify the mole ratio of potassium (K) to magnesium bromide (MgBr[tex]\(_2\)[/tex]) from the balanced equation. According to the equation:
[tex]\[ 2 \text{ moles of } K \text{ react with } 1 \text{ mole of } MgBr_2 \][/tex]
3. We are given that we have 12.8 moles of MgBr[tex]\(_2\)[/tex]. Using the mole ratio from the balanced equation, we need to calculate how many moles of K are required to react with 12.8 moles of MgBr[tex]\(_2\)[/tex].
4. Multiply the number of moles of MgBr[tex]\(_2\)[/tex] by the mole ratio of K to MgBr[tex]\(_2\)[/tex]:
[tex]\[ \text{moles of } K \text{ needed} = 12.8 \text{ moles of } MgBr_2 \times \left(\frac{2 \text{ moles of } K}{1 \text{ mole of } MgBr_2}\right) \][/tex]
5. Perform the multiplication:
[tex]\[ \text{moles of } K \text{ needed} = 12.8 \times 2 = 25.6 \text{ moles of } K \][/tex]
So, the number of moles of potassium required to react completely with 12.8 moles of magnesium bromide is [tex]\(25.6\)[/tex] moles of [tex]\(K\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{25.6 \text{ moles of } K} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.