Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the amplitude, period, and phase shift of the trigonometric equation [tex]\( y = -2 - 8 \sin(x) \)[/tex], we need to analyze each part of the equation separately.
### Amplitude:
The amplitude of a sine function of the form [tex]\( y = a \sin(x) \)[/tex] is given by the absolute value of the coefficient in front of the sine function. Here, the equation is [tex]\( y = -2 - 8 \sin(x) \)[/tex]. The coefficient in front of [tex]\( \sin(x) \)[/tex] is -8. Therefore, the amplitude is the absolute value of -8, which is 8.
### Period:
The period of the sine function [tex]\( y = \sin(bx) \)[/tex] is calculated using the formula [tex]\( \frac{2\pi}{|b|} \)[/tex]. In the given function [tex]\( y = -2 - 8 \sin(x) \)[/tex], there is no coefficient in front of [tex]\( x \)[/tex] inside the sine function, meaning [tex]\( b = 1 \)[/tex]. Therefore, the period is [tex]\( \frac{2\pi}{1} = 2\pi \)[/tex].
### Phase Shift:
The phase shift of the sine function [tex]\( y = \sin(x - c) \)[/tex] is determined by the horizontal shift applied within the argument of the sine function. In the given equation [tex]\( y = -2 - 8 \sin(x) \)[/tex], there is no horizontal shift indicated within the sine function. Thus, the phase shift is zero, or we say there is no phase shift.
### Summary:
- Amplitude: 8
- Period: [tex]\( 2\pi \approx 6.283185307179586 \)[/tex]
- Phase Shift: No phase shift
So, we have:
- Amplitude: 8
- Period: [tex]\( 6.283185307179586 \)[/tex]
- Phase Shift: No phase shift
Correctly, we should select the following:
Amplitude: 8
Period: [tex]\( 6.283185307179586 \)[/tex]
Phase Shift: No phase shift
### Amplitude:
The amplitude of a sine function of the form [tex]\( y = a \sin(x) \)[/tex] is given by the absolute value of the coefficient in front of the sine function. Here, the equation is [tex]\( y = -2 - 8 \sin(x) \)[/tex]. The coefficient in front of [tex]\( \sin(x) \)[/tex] is -8. Therefore, the amplitude is the absolute value of -8, which is 8.
### Period:
The period of the sine function [tex]\( y = \sin(bx) \)[/tex] is calculated using the formula [tex]\( \frac{2\pi}{|b|} \)[/tex]. In the given function [tex]\( y = -2 - 8 \sin(x) \)[/tex], there is no coefficient in front of [tex]\( x \)[/tex] inside the sine function, meaning [tex]\( b = 1 \)[/tex]. Therefore, the period is [tex]\( \frac{2\pi}{1} = 2\pi \)[/tex].
### Phase Shift:
The phase shift of the sine function [tex]\( y = \sin(x - c) \)[/tex] is determined by the horizontal shift applied within the argument of the sine function. In the given equation [tex]\( y = -2 - 8 \sin(x) \)[/tex], there is no horizontal shift indicated within the sine function. Thus, the phase shift is zero, or we say there is no phase shift.
### Summary:
- Amplitude: 8
- Period: [tex]\( 2\pi \approx 6.283185307179586 \)[/tex]
- Phase Shift: No phase shift
So, we have:
- Amplitude: 8
- Period: [tex]\( 6.283185307179586 \)[/tex]
- Phase Shift: No phase shift
Correctly, we should select the following:
Amplitude: 8
Period: [tex]\( 6.283185307179586 \)[/tex]
Phase Shift: No phase shift
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.