Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Find the quotient and remainder using long division.

[tex]\[
\frac{x^2 - 4x + 8}{x - 3}
\][/tex]

Quotient: ______________

Remainder: ______________


Sagot :

To find the quotient and remainder when dividing [tex]\( x^2 - 4x + 8 \)[/tex] by [tex]\( x - 3 \)[/tex], we will use polynomial long division.

1. Set up the division:
[tex]\[ \frac{x^2 - 4x + 8}{x - 3} \][/tex]

2. Divide the first term of the numerator by the first term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]

3. Multiply the whole divisor by this result (x) and subtract from the original numerator:
[tex]\[ (x^2 - 4x + 8) - (x \cdot (x - 3)) = (x^2 - 4x + 8) - (x^2 - 3x) = (-4x + 8) - (-3x) = -4x + 3x + 8 = -x + 8 \][/tex]

4. Repeat the process with the new polynomial (-x + 8):
[tex]\[ \frac{-x}{x} = -1 \][/tex]

5. Multiply the whole divisor by this result (-1) and subtract from the current polynomial:
[tex]\[ (-x + 8) - (-1 \cdot (x - 3)) = (-x + 8) - (-x + 3) = 8 - 3 = 5 \][/tex]

After these steps, the quotient is:
[tex]\[ \boxed{x - 1} \][/tex]
and the remainder is:
[tex]\[ \boxed{5} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.