Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the gravitational force between two objects, you can use Newton's law of universal gravitation. The formula is:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (in kilograms),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects (in meters).
Given:
- The mass of each bowling ball, [tex]\( m_1 = m_2 = 8 \, \text{kg} \)[/tex],
- The distance between the two bowling balls, [tex]\( r = 2 \, \text{m} \)[/tex].
Now plug these values into the formula:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \right) \frac{8 \, \text{kg} \times 8 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
First, calculate [tex]\( (2 \, \text{m})^2 \)[/tex]:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Next, calculate [tex]\( 8 \, \text{kg} \times 8 \, \text{kg} \)[/tex]:
[tex]\[ 8 \, \text{kg} \times 8 \, \text{kg} = 64 \, \text{kg}^2 \][/tex]
Now the formula looks like this:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \right) \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Divide [tex]\( 64 \, \text{kg}^2 \)[/tex] by [tex]\( 4 \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} = 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
Now multiply:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \times 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \][/tex]
Calculate [tex]\( 6.67 \times 16 \)[/tex]:
[tex]\[ 6.67 \times 16 = 106.72 \][/tex]
Now add the exponent:
[tex]\[ 106.72 \times 10^{-11} = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
So, the gravitational force between the two bowling balls is:
[tex]\[ F = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
Referring to the given options:
- A. [tex]\( 2.14 \times 10^{-9} \, \text{N} \)[/tex]
- B. [tex]\( 3.21 \times 10^{-8} \, \text{N} \)[/tex]
- C. [tex]\( 2.68 \times 10^{-10} \, \text{N} \)[/tex]
- D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
The closest and correct answer is:
D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (in kilograms),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects (in meters).
Given:
- The mass of each bowling ball, [tex]\( m_1 = m_2 = 8 \, \text{kg} \)[/tex],
- The distance between the two bowling balls, [tex]\( r = 2 \, \text{m} \)[/tex].
Now plug these values into the formula:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \right) \frac{8 \, \text{kg} \times 8 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
First, calculate [tex]\( (2 \, \text{m})^2 \)[/tex]:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Next, calculate [tex]\( 8 \, \text{kg} \times 8 \, \text{kg} \)[/tex]:
[tex]\[ 8 \, \text{kg} \times 8 \, \text{kg} = 64 \, \text{kg}^2 \][/tex]
Now the formula looks like this:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \right) \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Divide [tex]\( 64 \, \text{kg}^2 \)[/tex] by [tex]\( 4 \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} = 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
Now multiply:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \times 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \][/tex]
Calculate [tex]\( 6.67 \times 16 \)[/tex]:
[tex]\[ 6.67 \times 16 = 106.72 \][/tex]
Now add the exponent:
[tex]\[ 106.72 \times 10^{-11} = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
So, the gravitational force between the two bowling balls is:
[tex]\[ F = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
Referring to the given options:
- A. [tex]\( 2.14 \times 10^{-9} \, \text{N} \)[/tex]
- B. [tex]\( 3.21 \times 10^{-8} \, \text{N} \)[/tex]
- C. [tex]\( 2.68 \times 10^{-10} \, \text{N} \)[/tex]
- D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
The closest and correct answer is:
D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.