Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which combination of the rocket body and engine will result in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex] at the start of the launch, we can use Newton's second law of motion. Newton's second law states:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons, N),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms, kg),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared, [tex]\(\text{m/s}^2\)[/tex]).
We are given the following:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Body} & \text{Mass (kg)} & \text{Engine} & \text{Force (N)} \\ \hline 1 & 0.50 & 1 & 25 \\ \hline 2 & 1.5 & 2 & 20 \\ \hline 3 & 0.75 & 3 & 30 \\ \hline \end{array} \][/tex]
To find the acceleration, we rearrange the formula to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
We need to check each combination of rocket body and engine to see which one results in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex].
### Combination Calculations:
1. Body 1 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.50 \, \text{kg}} = 50 \, \text{m/s}^2 \][/tex]
2. Body 2 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{1.5 \, \text{kg}} = \frac{20}{1.5} \approx 13.33 \, \text{m/s}^2 \][/tex]
3. Body 3 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.75 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
4. Body 1 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.50 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
5. Body 1 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.50 \, \text{kg}} = 60 \, \text{m/s}^2 \][/tex]
6. Body 2 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{1.5 \, \text{kg}} \approx 16.67 \, \text{m/s}^2 \][/tex]
7. Body 3 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.75 \, \text{kg}} = \frac{20}{0.75} \approx 26.67 \, \text{m/s}^2 \][/tex]
8. Body 2 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{1.5 \, \text{kg}} = 20 \, \text{m/s}^2 \][/tex]
9. Body 3 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.75 \, \text{kg}} \approx 33.33 \, \text{m/s}^2 \][/tex]
From our calculations, the combinations that result in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex] are:
- Body 3 + Engine 3
- Body 1 + Engine 2
Therefore, the best combination with [tex]\( 40 \, \text{m/s}^2 \)[/tex] acceleration considering practical solutions would be the combination Body 1 + Engine 2.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons, N),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms, kg),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared, [tex]\(\text{m/s}^2\)[/tex]).
We are given the following:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Body} & \text{Mass (kg)} & \text{Engine} & \text{Force (N)} \\ \hline 1 & 0.50 & 1 & 25 \\ \hline 2 & 1.5 & 2 & 20 \\ \hline 3 & 0.75 & 3 & 30 \\ \hline \end{array} \][/tex]
To find the acceleration, we rearrange the formula to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
We need to check each combination of rocket body and engine to see which one results in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex].
### Combination Calculations:
1. Body 1 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.50 \, \text{kg}} = 50 \, \text{m/s}^2 \][/tex]
2. Body 2 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{1.5 \, \text{kg}} = \frac{20}{1.5} \approx 13.33 \, \text{m/s}^2 \][/tex]
3. Body 3 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.75 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
4. Body 1 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.50 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
5. Body 1 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.50 \, \text{kg}} = 60 \, \text{m/s}^2 \][/tex]
6. Body 2 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{1.5 \, \text{kg}} \approx 16.67 \, \text{m/s}^2 \][/tex]
7. Body 3 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.75 \, \text{kg}} = \frac{20}{0.75} \approx 26.67 \, \text{m/s}^2 \][/tex]
8. Body 2 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{1.5 \, \text{kg}} = 20 \, \text{m/s}^2 \][/tex]
9. Body 3 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.75 \, \text{kg}} \approx 33.33 \, \text{m/s}^2 \][/tex]
From our calculations, the combinations that result in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex] are:
- Body 3 + Engine 3
- Body 1 + Engine 2
Therefore, the best combination with [tex]\( 40 \, \text{m/s}^2 \)[/tex] acceleration considering practical solutions would be the combination Body 1 + Engine 2.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.