Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given relationships are both linear and proportional, we need to identify which equations can be expressed in the form [tex]\( y = kx \)[/tex], where [tex]\( k \)[/tex] is a constant.
Let's analyze each equation one by one:
1. [tex]\( y = x + 1 \)[/tex]:
- This equation is of the form [tex]\( y = mx + b \)[/tex] where [tex]\( m = 1 \)[/tex] and [tex]\( b = 1 \)[/tex].
- For a relationship to be proportional, [tex]\( b \)[/tex] must be 0. Since in this case [tex]\( b \)[/tex] is not 0, this is not a proportional relationship.
2. [tex]\( y = \frac{x}{12} \)[/tex]:
- This equation is of the form [tex]\( y = kx \)[/tex] where [tex]\( k = \frac{1}{12} \)[/tex].
- There is no constant term added to [tex]\( kx \)[/tex], which means [tex]\( b = 0 \)[/tex] here.
- Therefore, this is a proportional relationship.
3. [tex]\( y = 0.7x \)[/tex]:
- This equation is also of the form [tex]\( y = kx \)[/tex] where [tex]\( k = 0.7 \)[/tex].
- Again, there is no constant term added to [tex]\( kx \)[/tex], which means [tex]\( b = 0 \)[/tex] here.
- Therefore, this is a proportional relationship.
4. [tex]\( y = 6x^2 \)[/tex]:
- This equation involves [tex]\( x^2 \)[/tex], making it a quadratic relationship, not linear.
- Since it is not linear, it cannot be a proportional relationship. Therefore, it is not proportional.
5. [tex]\( y = 1200x \)[/tex]:
- This equation is of the form [tex]\( y = kx \)[/tex] where [tex]\( k = 1200 \)[/tex].
- There is no constant term added to [tex]\( kx \)[/tex], which means [tex]\( b = 0 \)[/tex] here.
- Therefore, this is a proportional relationship.
Summarizing the analysis, the linear relationships that are also proportional are:
- [tex]\( y = \frac{x}{12} \)[/tex]
- [tex]\( y = 0.7x \)[/tex]
- [tex]\( y = 1200x \)[/tex]
Thus, the corresponding indices of these relationships are:
[tex]\[ [2, 3, 5] \][/tex]
Let's analyze each equation one by one:
1. [tex]\( y = x + 1 \)[/tex]:
- This equation is of the form [tex]\( y = mx + b \)[/tex] where [tex]\( m = 1 \)[/tex] and [tex]\( b = 1 \)[/tex].
- For a relationship to be proportional, [tex]\( b \)[/tex] must be 0. Since in this case [tex]\( b \)[/tex] is not 0, this is not a proportional relationship.
2. [tex]\( y = \frac{x}{12} \)[/tex]:
- This equation is of the form [tex]\( y = kx \)[/tex] where [tex]\( k = \frac{1}{12} \)[/tex].
- There is no constant term added to [tex]\( kx \)[/tex], which means [tex]\( b = 0 \)[/tex] here.
- Therefore, this is a proportional relationship.
3. [tex]\( y = 0.7x \)[/tex]:
- This equation is also of the form [tex]\( y = kx \)[/tex] where [tex]\( k = 0.7 \)[/tex].
- Again, there is no constant term added to [tex]\( kx \)[/tex], which means [tex]\( b = 0 \)[/tex] here.
- Therefore, this is a proportional relationship.
4. [tex]\( y = 6x^2 \)[/tex]:
- This equation involves [tex]\( x^2 \)[/tex], making it a quadratic relationship, not linear.
- Since it is not linear, it cannot be a proportional relationship. Therefore, it is not proportional.
5. [tex]\( y = 1200x \)[/tex]:
- This equation is of the form [tex]\( y = kx \)[/tex] where [tex]\( k = 1200 \)[/tex].
- There is no constant term added to [tex]\( kx \)[/tex], which means [tex]\( b = 0 \)[/tex] here.
- Therefore, this is a proportional relationship.
Summarizing the analysis, the linear relationships that are also proportional are:
- [tex]\( y = \frac{x}{12} \)[/tex]
- [tex]\( y = 0.7x \)[/tex]
- [tex]\( y = 1200x \)[/tex]
Thus, the corresponding indices of these relationships are:
[tex]\[ [2, 3, 5] \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.