Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To calculate the molar solubility of calcium hydroxide [tex]\(\text{Ca(OH)}_2\)[/tex] in water, we will use the solubility product constant ([tex]\(K_{\text{sp}}\)[/tex]).
Given:
[tex]\[ K_{\text{sp}} \text{ for } \text{Ca(OH)}_2 = 5.02 \][/tex]
The dissociation of calcium hydroxide in water is represented by the equation:
[tex]\[ \text{Ca(OH)}_2(s) \rightleftharpoons \text{Ca}^{2+}(aq) + 2\text{OH}^-(aq) \][/tex]
Let [tex]\( s \)[/tex] be the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex]. At equilibrium, the concentrations of the ions in solution will be:
[tex]\[ [\text{Ca}^{2+}] = s \][/tex]
[tex]\[ [\text{OH}^-] = 2s \][/tex]
Given the expression for the solubility product constant:
[tex]\[ K_{\text{sp}} = [\text{Ca}^{2+}][\text{OH}^-]^2 \][/tex]
Substitute the expressions for the ion concentrations:
[tex]\[ K_{\text{sp}} = s \cdot (2s)^2 \][/tex]
[tex]\[ K_{\text{sp}} = s \cdot 4s^2 \][/tex]
[tex]\[ K_{\text{sp}} = 4s^3 \][/tex]
Now, solve for [tex]\( s \)[/tex]:
[tex]\[ 4s^3 = K_{\text{sp}} \][/tex]
[tex]\[ s^3 = \frac{K_{\text{sp}}}{4} \][/tex]
[tex]\[ s = \left( \frac{5.02}{4} \right)^{1/3} \][/tex]
To find the numeric value of molar solubility [tex]\( s \)[/tex]:
[tex]\[ s \approx 1.0786517240005968 \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex] in water is closest to:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Thus, the correct answer is:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Given:
[tex]\[ K_{\text{sp}} \text{ for } \text{Ca(OH)}_2 = 5.02 \][/tex]
The dissociation of calcium hydroxide in water is represented by the equation:
[tex]\[ \text{Ca(OH)}_2(s) \rightleftharpoons \text{Ca}^{2+}(aq) + 2\text{OH}^-(aq) \][/tex]
Let [tex]\( s \)[/tex] be the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex]. At equilibrium, the concentrations of the ions in solution will be:
[tex]\[ [\text{Ca}^{2+}] = s \][/tex]
[tex]\[ [\text{OH}^-] = 2s \][/tex]
Given the expression for the solubility product constant:
[tex]\[ K_{\text{sp}} = [\text{Ca}^{2+}][\text{OH}^-]^2 \][/tex]
Substitute the expressions for the ion concentrations:
[tex]\[ K_{\text{sp}} = s \cdot (2s)^2 \][/tex]
[tex]\[ K_{\text{sp}} = s \cdot 4s^2 \][/tex]
[tex]\[ K_{\text{sp}} = 4s^3 \][/tex]
Now, solve for [tex]\( s \)[/tex]:
[tex]\[ 4s^3 = K_{\text{sp}} \][/tex]
[tex]\[ s^3 = \frac{K_{\text{sp}}}{4} \][/tex]
[tex]\[ s = \left( \frac{5.02}{4} \right)^{1/3} \][/tex]
To find the numeric value of molar solubility [tex]\( s \)[/tex]:
[tex]\[ s \approx 1.0786517240005968 \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex] in water is closest to:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Thus, the correct answer is:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.